
International Journal of Computer Trends and Technology (IJCTT) – Volume 20 Number 1 – Feb 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page41

A Comparative Study: RTOS and Its Application

Gaurav Rai
#1

, Sachin Kumar
 *2

,

1,2Department of Electronics & Communication Engineering, Amity University

Amity University Uttar Pradesh, Lucknow India

Abstract— Over past few decades the idea and need of

compatible Real time operating systems has emerged as one of

the key factors in the development of Real time operating

systems, because of the abundance of incompatible real-time

operating systems in the market, each targeted towards a specific

segment of the industry. There is a need therefore to draw the

similarities and differences between these operating systems, so

that a real-time system developer can make an intelligent choice

for the application at hand. The primary role of an operating

system is to manage resources so as to meet the demands of

target applications. Traditional timesharing operating systems

target application environments that demand fairness and high

resource utilization. Real-time applications on the other hand

demand timeliness and predictability, the design of a real-time

operating system (RTOS) is essentially a balance between

providing a reasonably rich feature set for application

development and deployment and, not sacrificing predictability

and timeliness. This paper briefly discusses and describes various

features of XENOMAI and RTAI in relation to compatibility,

features, multitasking and resource management.

Keywords: XENOMAI, RTAI, compatibility, features,
multitasking, resource management

I. INTRODUCTION

All computer system is divided into four parts: Hardware,

Operating system, Application software and User [1].All the

above parts of the computer system depend on each other.

User communicates with application software; application
software depends on operating system for any support and

resource. Operating system deals with hardware. Operating

system works like resource manager. It used to do following

operations for user and hardware: processes, threads, memory

management, physical-memory management, dynamic

memory management , scheduling, ipcs, interrupt

management, I/O subsystems, device drivers, timer

subsystems, file system, networking , system call API

libraries APIs.

Real time operating system contains all core features

available in GPOS. The difference mainly lies in the

implementation and implementation is fine tuned to ensure low

latency and time deterministic behavior. RTOS contains a

combination of various modules, including the kernel, a file

system, networking protocol stacks, and other components

required for a particular application.

Fig1: High-level view of an RTOS, its kernel, and other components found in

embedded systems. [2]

This paper briefly discusses and describes various features

of XENOMAI and RTAI in relation to compatibility, features,

multitasking and resource management.

A. RTAI (Real-Time Application Interface)

It evolved from NMT RTLinux (New Mexico Institute of

Technology’s Real-Time Linux), and takes a unique approach

of running Linux as a task (lowest priority) that competes with

other real-time tasks for the CPU [15]. RTAI provides

deterministic response to POSIX, interrupt, native RTAI real

time task. Real time Application Interface consists mainly of

two parts:

 The Linux kernel (patch with Adeos-based) which

produce a hardware abstraction layer.

 A broad variety of services which make real-time

programmer’s lives easier [14].

RTAI versions over 3.0 use an Adeos kernel patch, slightly
modified in the x86 architecture case, providing additional

abstraction and much lessened dependencies on the 'patched'

operating system. Adeos is a kernel patch comprising an

Interrupt Pipeline where different Operating System Domains

register interrupt handlers. This way, RTAI can transparently

take over interrupts while leaving the processing of all others to

Linux. Use of Adeos also frees RTAI from patent restrictions

caused by RT Linux project.

Source model Open Source

Latest stable release RTAI3.9.2

Available programming

language

C,C++

Kernel type Linux Kernel

International Journal of Computer Trends and Technology (IJCTT) – Volume 20 Number 1 – Feb 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page42

Supporting platform ARM.MIPS (with FPU and

TSC), X-86-64 PowerPc

Kernel type Linux Kernel

Default user interface CLI,GNOME shell, KDE

Plasma Workspace Unity

License --

Table1: Specifications RTAI 3.9.2

B. Xenomai:

 There is a lack of common software framework for
developing emulators, whereas the behavioral similarities

between the traditional RTOS are obvious. The Xenomai

technology aims at fulfilling this gap, by providing a

consistent architecture neutral and generic emulation layer

taking advantage of these similarities. It is also committed to

provide an increasing set of traditional RTOS emulators built

on top of this layer.

 Xenomai relies on the common features and behaviors

found between many embedded traditional RTOS, especially

from the thread scheduling and synchronization standpoints.

These similarities are exploited to implement a nucleus
exporting a set of generic services. These services grouped in

a high-level interface can be used in turn to implement

emulation modules of real-time application programming

interfaces, which mimic the corresponding real-time kernel

APIs [17].

Source model Open Source

Latest stable model Xenomai 2.6.3

Available programming

language
C,C++

Supporting platforms X86,ARM,Power Pc IA-

64,Blackfin,nois2

Kernel type Linux kernel

Default user interface CLI,GMOME shell, KDE,

Plasma, Workspace, Unity

License --

Table2: Specifications Xenomai 2.6.3

II. FEATURE COMPARISON BETWEEN RTAI AND XENOMAI

Out of various real time operating systems RTAI and

XENOMAI are most recent and they have unique features

which form the basis of comparison.

A. Multitasking and scheduling:

Scheduler is a component of the kernel - may be treated as

a set of routines and a set of data-structures - managed using

well defined rules and policies. Scheduler () routine/method

may be invoked by the system, when appropriate one in the

case of preemption point, second in the case of blocking a

process inside a system call, one more such is when a process

is terminated.

Scheduler may be divided into two components - one is the

policy/ algorithm component and the other is the context

switching component. Typically study of scheduler revolves

around policy part. There are several policies proposed

theoretically not all are used in practice. Even if used, there are

modifications to theoretical policies and when they are
implemented, these changes are for convenience. Several

scheduling policies may be implemented in a given system.

They may co-exist at the same time depending upon

application’s requirements; one or more policies may be used

in a given system.

Scheduling policies can be broadly divided into two

categories: Non real time scheduling policies and real time

scheduling policies. In short, real time scheduling policies

provide strict scheduling priorities. Non real time policies do

not implement strict scheduling priorities. Their use is highly

dependent on the applications and system's requirements.

Typically non real time scheduling policies are more

commonly used. Such policies are commonly used are time-

slicing and time-sharing policies. A less common policy is first

come first serve (FCFS).

In a multitasking system, there can be several processes

existing in the system. Process control block or process
descriptor is the name given to objects used to manage

processes in the system. There is one process descriptor per

process. Each process also has an assigned, unique process id

maintained in the process descriptor (pd). Process manager

subsystem is responsible for managing processes in the system.

Process manager maintains process descriptors in a process

descriptor table or process descriptor list.

A process may be understood from user-space/application

perspective or system-space/kernel perspective. There is a

process layout in user-space address-space of the process.

User-space address space of the process is made up of logical

addresses or virtual addresses.

Property RTAI XENOMAI

Priority

scheduling

Fixed priority

primitive

Configurable

priority ,primitive

but not block state

Same level

scheduling

FCFS Manual round-robin

Threaded Single Multi

Priority level 2^30 Time bound base

priority level

Table 3: Multi-tasking and Scheduling

 A newly created process is added to ready state meaning,

state is changed to ready and pd is added to ready queue of the

system. Ready queue is where are processes that are ready to

execute are maintained. These processes have been allocated
all other resources, but the processor scheduler scans ready

queue, whenever it needs to select a new process to be

allocated the processor.

 Process scheduler is not a process. Scheduler may get

invoked due to certain events in the system. One such event is

a process termination, another such event is hardware interrupt

and there are many other events due to which scheduler may

International Journal of Computer Trends and Technology (IJCTT) – Volume 20 Number 1 – Feb 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page43

be invoked. It is a component of the operating system kernel

and it is made up of several routines. One or more of which

will be invoked during scheduling activities.

B. Synchronization

Synchronization typically involves co-ordination between

processes and it may be achieved via operating system

services explicitly or implicitly. In implicit case, co-ordination

is a deliberate act of the developer. In explicit case,

communication/data exchange is the real intention and system

adds co-ordination to ensure certain natural rules are satisfied.
This can be convenient to the developer or may interfere with

the developer's work.

System also is involved in synchronizing the activities of

the processes that are involved in exchanging the data

meaning. There will be an implicit synchronization between

the processes. If a process A is expecting data from another

process B and initiating a receive call from a message queue,

the corresponding process A will be blocked in the wait queue

of the corresponding message queue instance. It is the

responsibility of the system to wake-up the blocked process A,

receiving process, when the sending process B has sent a
message to the message queue instance.

Property RTAI XENOMAI

Constructs Simulated with

FIFO

semaphores,

message queues,

event flags or

mailboxes and

simulated with

FIFO

Protocol None Priority

inheritance

protocol.

Table 3: Synchronization

C. INTERRUPT HANDLER AND SCHEDULING:

Deferred processing routines are pended/queued by I/O

subsystems and device drivers of the system. Scheduler is

invoked after interrupt handling. In reality, it is invoked after

interrupt handling and processing of these deferred processing
routines. There can be several of them depends on the load

conditions. There can be a case, where a higher priority thread

(that is currently interrupted or just woken up and ready for

scheduling) may be delayed due to certain I/O deferred

processing (that may benefit a lower priority thread). Latency

involved in invoking the scheduler is not predictable and does

not have an upper bound, deterministic behaviour.

Property RTAI XENOMAI

ISR 8259 RTHAL

Signals None Signal used

Nested interrupt No (queued) Atomic

Table 4: Interrupt handler

D. Memory Management:

Virtual Memory (VM) of the system may lead to

generation of page faults in process/threads of a process and

this will lead to latencies and unpredictable performance. Due

to VM, a kernel thread may be initiated any time in the system.

Such unpredictable behaviour is also unacceptable. Subsystems

point of view, driver’s point of view and any activity in system

space. Such memory requirements will be dynamic and require

physical memory. Physical memory allocations are not

predictable and latencies can also be higher.

This can be seen in 2 ways- one from the process

perspective and another from kernel space perspective. Process

perspective - mmap() and related facilities are vm based
unpredictability with respect to VM applies here as well.

mmap() may be used directly or indirectly via malloc(). IPCs ,

I/O subsystems and device drivers use physical memory

manager for dynamic memory management and their inherent

unpredictability is also passed on here.

PROPERTY RTAI XENOMAI

Virtual memory No For User-space

application

Dynamic memory No Yes

Table 5: Memory Management

E. Inter Process communication:

Data exchange IPCs of GPOS use physical memory

manager of the GPOS for dynamic memory requirements of

buffers. The inherent unpredictability of PMM is passed on -
there are no pre-allocations of buffers and mostly done as per

run time requirements. These principles apply to pipes,

message queues, sockets and any other such IPC mechanism

supported by GPOS. Locks are also needed to manage

processes and threads in many run time scenarios, priority

inversion problems may arise meaning, a higher priority

process/thread may be blocked by a lower priority

process/thread and the worst part is that the lower priority

process/thread may be pre-empted by other intermediate

priority processes/threads. If locks do not support certain

special features, problems such as priority inversions may be

encountered in GPOS.

Property RTAI XENOMAI

Constructs FIFO SHARED

MEMORY

semaphores,

message queues,

event flags or

Mailboxes.

Table 6: Inter Process Communication

III. CONCLUSION AND FUTURE WORK

Operating Systems try to fit in different requirements of

application. This can be achieved by using customization of the

given operating system. This paper includes comparison

between different features of Xenomai and RTAI. It also

represent that using Xenomai with the developer point of view

International Journal of Computer Trends and Technology (IJCTT) – Volume 20 Number 1 – Feb 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page44

is lot easier than any other RTOS. Any developer can change

RTOS feature according to their application requirement.

IV. REFERENCES

[1] Operating system concept-Selberschatz, Galvin, Gagne 7
th
 Edison

[2] Real time concept for Embedded system by Qing Li with Caroline Yao

[3] "Real Time Systems - by Jane W.S. Liu / yr of publ. 2000"

[4] "Programming for real world - by Gallmeister / yr of publ. 1993"

[5] http://en.wikipedia.org/wiki/LynxOS

[6] www.lynuxworks.com/rtos

[7] H. Takada, Y. Nakamoto, and K. Tamaru, “The ITRON Project:

Overview and Recent Results”, 5th Intl.Conference on Real-Time

Computing Systems and Applications (RTCSA), pp.3-10, Oct. 1998

[8] Real-Time Operating Systems: An Ongoing Review by Ramesh

Yerraballi.

[9] http://www.t-engine.org/tron-project/itron

[10] http://en.wikipedia.org/wiki/ITRON_project

[11] OSE,“OSE Realtime Kernel”, http://www.ose.com/PDF/rtk.pdf.

[12] http://www.enea.com/solutions/rtos/ose/

[13] http://en.wikipedia.org/wiki/Operating_System_Embedded

[14] http://en.wikipedia.org/wiki/RTAI

[15] P. Mantegazza, E. Bianchi, L. Dozio, S. Papacharalambous, S. Hughes,

and D. Beal,, “RTAI: Real-Time Application Interface”, Linux Journal

Magazine, Issue No. 72, April 2000.

[16] http://en.wikipedia.org/wiki/Xenomai_vs._RTAI

[17] Xenomai – Implementing a RTOS emulation framework on GNU/Linux

by Philippe Gerum1989.

