

 International Journal of Computer Trends and Technology (IJCTT) – Volume 21 Number 1 – Mar 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 50

Industrial Computing Systems:

A Case Study of Fault Tolerance Analysis
Andrey A. Shchurov

Department of Telecommunications Engineering, Faculty of Electrical Engineering,

Czech Technical University in Prague, The Czech Republic

Abstract— Fault tolerance is a key factor of industrial computing

systems design. But in practical terms, these systems, like every

commercial product, are under great financial constraints and

they have to remain in operational state as long as possible due to

their commercial attractiveness. This work provides an analysis

of the instantaneous failure rate of these systems at the end of

their life-time period. On the basis of this analysis, we determine

the effect of a critical increase in the system failure rate and the

basic condition of its existence. The next step determines the

maintenance scheduling which can help to avoid this effect and to

extend the system life-time in fault-tolerant mode.

Keywords— reliable computing system, fault tolerance,

maintenance scheduling.

I. INTRODUCTION

Nowadays, manufacturing companies are seeking to

continuously improve efficiency and drive down costs for

existing facilities and processes. The key to achieving these

goals is uninterrupted access to information. With a constant

flow of data (including real-time technological processes),

manufacturers can develop more efficient ways to connect

globally with suppliers, employees and partners, and to more

effectively meet the needs of their customers. As a

consequence, in addition to the technical specifications

(performance, interoperability, functionality, etc.), industrial

computing systems face the following additional challenges:

 reliability – solutions must support the operational

availability of the manufacturing facility;

 cost – capital comes at a premium, and additional costs

(or costlier components) must add clear value that is

understood by the financial management;

 flexibility – solutions have to rely on commercial off-

the-shelf (COTS) equipment, provided by a number of

vendors.

Operational availability is the critical feature of industrial

computing systems. For this reason the design of these

systems is based on the concepts of fault tolerance – in

practical terms, they are able to keep working to a level of

satisfaction in the presence of technical and/or organizational

problems, including [1]:

 hardware-related faults;

 software bugs and errors;

 physical damage or other flaws introduced into the

system from the environment;

 operator errors, such as erroneous keystrokes, bad

command sequences, or installing unexpected software.

The key factor of the fault tolerant design is preventing

failures due to system components and it addresses the

fundamental characteristic of fault tolerance in two ways

[2][3]:

 replication – providing multiple identical instances of

the same component and choosing the correct result on

the basis of a quorum (voting);

 redundancy – providing multiple identical instances of

the same component and switching to one of the

remaining instances in case of a failure (failover).

On the other hand, it is well known that the effectiveness of

computing systems depend on both the quality of its design as

well as the proper maintenance actions to prevent it from

failing. In fact, the choice of scheduled maintenance policies

which are optimum from an economic point of view

constitutes a predominating approach in reliability theory [4].

Our main goal is finding the simplest and cheapest solution

to keep fault tolerant industrial computing systems in

operational state as long as possible due to their commercial

attractiveness. Thus, to accomplish such a goal we need: (1) to

identify a typical (commercial) configuration of these systems;

and (2) to analyse systems behaviour at the end of the useful

period and at the wear-out period of the systems life-time.

 The rest of this paper is structured as follows. Section 2

introduces the related work. Section 3 presents analysis of the

instantaneous failure rate of commercial computing systems at

the end of their life-time period. On the basis of this analysis,

we determine the “Red zone” (a critical increase in the system

failure rate) and the basic condition of its existence. Section 4

introduces the maintenance scheduling which can help to

avoid this effect. Finally, conclusion remarks and future

research directions are given in Section 5.

II. BACKGROUND

In the past several decades, maintenance and replacement

problems have been extensively studied in the literature. The

most recent systematic survey of maintenance policies for the

last 50 years is presented by Sarkar et al. [5]. Based on this

survey, maintenance models can be roughly classified into

following categories: age replacement policy, block

replacement policy, periodic preventive maintenance policy,

failure limit policy, sequential preventive maintenance policy,

repair cost limit policy, repair time limit policy, repair number

counting policy, reference time policy, mixed age policy,

group maintenance policy, opportunistic maintenance policy,

etc. Each kind of policy has different characteristics,

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – Volume 21 Number 1 – Mar 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 51

advantages and disadvantages. In this context, this work lies

in the area of periodic preventive maintenance policy.

Fig. 1 Bathtub curve for electronic devices.

On the other hand, when dealing with maintenance models

the analysis of the failure rate play a primary role. Generally,

we can define the instantaneous failure rate as:

h(t)system = h(t)hardware + h(t)software + h(t)operate

h(t)hardware is hardware failure rate (defined by vendors). This

is a typical bathtub curve for electronic devices (see Fig. 1)

[6][7][8][9]. In this case the failure rate can be represented by

the Weibull transformed distribution [7]:

h(t)hardware = λβt
β-1

if t Th1 (Burn-in Life-Time Phase) then 0 < β < 1

if t Th2 (Useful Life-Time Phase) then β = 1

if t Th3 (Wear-Out Life-Time Phase) then β > 1

We should mention here environmental influences –

temperature, humidity, EMI and other [6]. These factors exert

influence not only on components/units on-the-job, but on

spare components/units on-the-shelf. Bad storage conditions

can directly affect hardware failure rates (the stress effect in a

typical bathtub curve [7]) or even lead to unexpected failure of

spare components/units in the worst case.

And based on this representation, we can define the

“Decision point” (DP) – the critical point of every commercial

telecommunication project – where the IT department has to

decide between:

 starting a new project (buying a new system),

 buying additional spare components/units,

 finishing the current project.

h(t)software is embedded software failure rate (defined by

vendors). The total failure rate for the software can be

represented as:

h(t)software = h(t)update + h(t)upgrade

where h(t)update is reliability improvement failure rate; and

h(t)upgrade is upgrade failure rate.

The reliability improvement or bug fix software

modification process occurs as part of regularly scheduled

software updates. As a consequence, the reliability

improvement failure rate is closely related to early failures in

hardware [6][8]. In contrast to the bug fix software

modifications, vendors are continuously changing embedded

software to both improve existing functionality and add new

capabilities. As the software grows and changes, the upgrade

failure rate will inherently increase due to the increased code

size and complexity. Thereafter, we have two basic options:

 Minor code changes (current software release update).

In this case, the upgrade failure rate affects the total

(aggregate) failure rate like the stress effect [8].

 Global code changes (upgrade to new software release).

This case leads the total (aggregate) failure rate to the

beginning of another burn-in period [6][8].

An important note – even the total failure rate tends to zero

value as time becomes large, the processes of code changing

and code size growth lead computing systems to settle on a

steady-state (nonzero software failure rate) [8].

h(t)operate is operator failure rate – erroneous keystrokes, bad

command sequences, or installing unexpected software [1].

III. ANALYSIS OF SYSTEM BEHAVIOUR

When talking about fault tolerant industrial computing

systems, we usually mean redundant commercial computing

systems (we need to state here – specific areas like the

military, nuclear or aerospace industries are beyond the scope

this work). In practice these industrial systems are under great

financial constraint – the main challenge is how to combine a

real fault tolerance and commercial attractiveness. As a

consequence, nowadays these systems have modular and/or

distributed architectures with critical components duplication

(usually controller/processor and power supply units).

Additional reliability is provided by the availability of spare

components or units. The number and composition are defined

by the project’s budget. The architectural diagram of these

systems (based on the von Neumann machine representation

[10]) is shown in Fig. 2. Of course, some vendors provide,

within extended technical support, operative replacement of

failure components, but this service has disadvantages:

 additional expenses – it is very difficult to find strong

arguments for financial management;

 response time (especially in developing countries) is

always longer than having a spare component on-the-

shelf.

Thus, as the object for analysis we have a system with two

controller units on-the-job and one spare controller unit on-

the-shelf (see Fig. 2). Controller/processor units are usually

the most expensive part of every computing systems and it is

usually impossible to persuade the financial management to

buy more than one spare unit.

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – Volume 21 Number 1 – Mar 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 52

Fig. 2 Architectural diagram of redundant commercial computing systems.

The analysis covers the end of the useful period and the

wear-out period of the system life-time. In order to simplify

the analysis, let us make the following assumptions:

 All three controller units are identical.

Components/units instantaneous failure rate is:

h(t)controller1 = h(t)controller2 = h(t)controller3 = h(t)controller

 Two main controllers units on-the-job are used during

their entire life-time periods. The spare controller unit is

used only if one of the two main controllers fails

(Interaction Type_1 – see Section 4 “System

maintenance scheduling”).

 This standby redundant system has perfect sensing and

switching subsystems.

 The IT department is staffed by qualified personnel and

the system is stable and does not usually require

operator interventions:

h(t)operate << h(t)hardware

At the end of the useful period industrial computing

systems generally use “stable” software releases. In this case

[8]:

h(t)software << h(t)hardware

Thus, the reliability function is dominated by hardware

failures and the impact of software failures is minor with

respect to the system failure rate:

h(t)hardware h(t)controller

In turn, the components/units life-time period can be

described by the lognormal distribution [7]. The parameters of

the distribution:

 a mean μ – a mean value of components/units life-time;

 a standard deviation δ – spread of components/units

life-time

Therefor the system instantaneous failure rate can be

represented as:

h(t)system = F(h(t)controller1, h(t)controller2)

h(t)controller1 h(t)hardware = f(t)

h(t)controller1 h(t)hardware = f(t + δ)

f(t) = λβt
β-1

Fig. 3 Fault-tolerant system behaviour – an arbitrary component/unit failure.

Fig. 4 Fault-tolerant system behaviour – two components/units simultaneous

failure

The following two options describe various scenarios of the

fault-tolerant system behaviour.

A. Option 1 – system behaviour in the case of δ >> 0

In practical terms, this option is the current practice (failed

components/units replacement) and there is nothing new here

[7][8][9] – see Fig. 3.

B. Option 2 – system behaviour in the case of δ 0

1. If t < T0 (see Fig. 4), then:

 The first controller unit (Controller_1) is in the Useful

Life-Time Phase.

 The second controller unit (Controller_2) is in the

Useful Life-Time Phase.

 The third (spare) controller unit (Controller_3) is not

present.

Thus

h(t)controller1 = h(t)controller2 = λ, β = 1

And

h(t)system = F(h(t)controller1, h(t)controller2) = λ/2

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – Volume 21 Number 1 – Mar 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 53

Fig. 5 Time diagram of controllers’ life-time usages – Interaction Type_1.

2. If T0 < t < T1 (see Fig. 4), then:

 The first controller unit (Controller_1) is in the Wear-

Out Life-Time Phase.

 The second controller unit (Controller_2) is in the

Wear-Out Life-Time Phase.

 The third (spare) controller unit (Controller_3) is not

present.

Thus

h(t)controller1 = λβt
β-1

, β > 1

h(t)controller2 = λβ(t + δ)
β-1

, β > 1

And

h(t)system = F(h(t)controller1, h(t)controller2)

3. If T1 < t < T2 (see Fig. 4), then:

 The first controller unit (Controller_1) is not present.

 The second controller unit (Controller_2) is not present.

 The third (spare) controller unit (Controller_3) is in the

Burn-in Life-Time Phase.

We need to state here: the well-known practice is to burn-in

components in the lab before putting them on-the-shelf – it

can help to avoid the worst effect of the Burn-in Life-Time

Phase. But these lab tests usually last one or two weeks (up to

four in the best case) while a typical Burn-in Life-Time Phase

is about 20 weeks [9]. Therefore we cannot completely

eliminate this period from the analysis.

Thus

h(t)controller3 = λβt
β-1

, 0 < β < 1

And

h(t)system = F(h(t)controller3)

4. If t > T2 (see Fig. 4), then:

 The first controller unit (Controller_1) is not present.

 The second controller unit (Controller_2) is not present.

 The third (spare) controller unit (Controller_3) is in the

Useful Life-Time Phase.

Thus

h(t)controller3 = λ, β = 1

And

h(t)system = F(h(t)controller3) = λ

Modern industrial technologies provide an effective

improvement in the stability of production processes. In turn,

this fact leads to the repeatability of the technical

characteristic (at least within the same production lot). And as

a consequence, we have components/units with a very small

spread in the components/units life-time (δ 0). Thus, both

main controllers units on-the-job come up to Wear-out Life-

Time Phase almost simultaneously (with a very small spread).

But at the same time a spare controller unit on-the-shelf is still

in Burn-in Life-Time Phase. Therefore, we have a critical

increase in the system failure probability – the “Red zone” –

Fig. 3. The basic condition of the “Red zone” existence is the

parameter ratio:

δ < Th3

where δ is the spread of components/units life-time; and Th3

is the duration of Wear-Out Life-Time Phase (see Fig. 4).

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – Volume 21 Number 1 – Mar 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 54

Fig. 6 Time diagram of controllers’ life-time usages – Interaction Type_2.

This effect can cause considerable problems for IT

departments. And in this case the fault tolerant (redundant)

design only cannot protect against it.

IV. SYSTEM MAINTENANCE SCHEDULING

The previous section presents the formal description of the

effect of a critical increase in the system failure rate. And now

our main goal is finding the simplest and cheapest solution to

avoid this effect for existing systems. It is obvious, being

under continuous financial constraints, that managerial

procedures (maintenance policy) are the most appropriate way.

Again our system has two controller units on-the-job and

one spare controller unit on-the-shelf (see Fig. 2). Fig. 5 and 6

show the time diagrams of controller units’ life-time usages.

A. Interaction Type_1

Fig. 5 presents the “classical” approach – two main

controller units on-the-job are used for the whole of their life-

time periods. The spare controller unit is used iff one of the

two main controllers fails.

Interaction Type_1 characteristic features:

 In this case we have the potential condition for the “Red

zone” existence.

 It is very difficult to determine DP correctly – we can

use only vendors’ statistics (MTBF) and in the real

world statistics very often lie. But a mistake in DP

determination carries reputation risks for IT department

personnel:

 too early assessment – in this case an IT department

will very probably have problems from financial

management (unnecessary investment);

 too late assessment – in this case it is highly probably

that the system will reach the wear-out period (the

“Red zone” in the worst case) and only the IT-

department (not financial management) takes full

responsibility for the consequences.

 In this case it is very difficult to convince financial

management of the need for investment in IT

infrastructure – the system has been working well since

installation and there are spare critical components/units

on-the shelf.

But we need to state here – the real advantage of this case is

the minimal IT department interference in error-free system

operations.

B. Interaction Type_2

Fig. 6 presents the possible solution based on periodic

replacement of one of two main controller units and a spare

controller unit.

Interaction Type_2 characteristic features:

 In this case we do not have the potential condition for

the practical “Red zone”.

 It is very easy to determine DP – the system is still in

fault-tolerant mode but there are no longer any spare

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – Volume 21 Number 1 – Mar 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 55

critical components/units (see Fig. 6). And it is obvious

that in this case we have a lot of time for the decision

realization (starting a new project or buying additional

spare components/units).

 In this case there is the strong argument for financial

management – there is nothing on-the-shelf.

And we need to state here – in this case the system life-time in

fault-tolerant (redundant) mode is up to 50% longer than the

system life-time in the first case (Interaction Type_1).

Potentially it can be used for saving investments in IT

infrastructures.

V. CONCLUSIONS

When talking about fault tolerant industrial computing

systems, we usually mean redundant commercial computing

systems (specific areas like the military, nuclear or aerospace

industries are beyond the scope this work). In practice these

industrial systems are under great financial constraint. As a

consequence, they have to remain in operational state as long

as possible due to their commercial attractiveness.

In this work we provided the analysis of the instantaneous

failure rate of commercial redundant computing systems at the

end of their life-time period. Under certain circumstances the

repeatability of the technical characteristic can cause a critical

increase in the system failure rate for redundant systems at

that time. The fault tolerant (redundant) design cannot protect

against this challenge (in contrast to The Useful Life-Time

Phase). In this case, the significant impact on operational

availability characteristics can be provided by the

maintenance scheduling. On the basis of the analysis we

determined the maintenance scheduling which can help (1) to

avoid this effect; and, as a consequence, (2) to extend the

system life-time in fault-tolerant (redundant) mode.

ACKNOWLEDGMENT

This research has been performed within the scientific

activities at the Department of Telecommunication

Engineering of the Czech Technical University in Prague,

Faculty of Electrical Engineering.

REFERENCES

[1] D. K. Pradhan, Ed., Fault-tolerant computer system design, Prentice-

Hall, 1996.

[2] H. Langmaack, W.-P. d. Roever and J. Vytopil, Eds., Formal Techniques

in Real-Time and Fault-Tolerant Systems: Third International

Symposium Organized Jointly with the Working Group Provably
Correct Systems, ProCoS, Lubeck, Germany, September 19-23, 1994

Proceedings, Springer-Verlag, 1994.

[3] N. G. Leveson, Engineering a Safer World: Systems Thinking Applied
to Safety (Engineering Systems), The MIT Press, 2012.

[4] I. Gertsbakh, Reliability Theory With Applications to Preventive

Maintenance, Springer, 2006.

[5] A. Sarkar, S. C. Panja and B. Sarkar, "Survey of maintenance policies

for the Last 50 Years," International Journal of Software Engineering &

Applications, vol. 03, no. 2, pp. 130-148, 2011.

[6] N. G. Leveson, Safeware: system safety and computers, ACM, 1995.

[7] M. Modarres, M. Kaminskiy and V. Krivtsov, Reliability Engineering

And Risk Analysis: A Practical Guide, 2nd ed., CRC Press, 2010.

[8] M. L. Ayers, Telecommunications System Reliability Engineering,

Theory, and Practice, 1st ed., Wiley-IEEE Press, 2012.

[9] D. P. Siewiorek and R. S. Swarz, Reliable computer systems: design and
evaluation, 3rd ed., A. K. Peters, Ltd., 1998.

[10] A. S. Tanenbaum and T. Austin, Structured Computer Organization, 6th

ed., Prentice Hall Press, 2012.

http://www.ijcttjournal.org/

