
International Journal of Computer Trends and Technology (IJCTT) – volume 23 Number 2 – May 2015 

ISSN: 2231-2803                             http://www.ijcttjournal.org                                 Page 65 

Matrix-Chain Multiplication Using Greedy and 

Divide-Conquer approach 
 

 

Abstract— Matrix Chain Multiplication is a famous 

application of optimization problem and is used widely in signal 

processing and network industry for routing. The crux of the 

solution lies in minimizing the cost or minimizing the number of 

arithmetic operations required to multiply out the matrices. A 

top-down dynamic approach is a well-known solution for this 

problem which helps to determine the minimal cost required to 

perform the required multiplication of the matrices. The 

dynamic solution bears time complexity of the order � .The 

authors in this paper present a greedy approach to find the 

optimal computation order of matrix chain multiplication. This 

approach provides the minimum cost required to compute the 

required result in a runtime of the order � as compared 

to the dynamic approach runtime of � .  Although the end 

result i.e. the matrix obtained after the chain multiplication 

provided by theapproaches, the proposed approach and the 

dynamic approach is the same. 

 
Keywords: Matrix Chain Multiplication, Dynamic Approach, 

Greedy Approach.  

I. INTRODUCTION 

In few past decades, many algorithms have been proposed for 

matrix chain multiplication[4][10]. Some of them are 

acceptable and have been used in many applications or 

programs. Majority of these algorithms use dynamic approach 

which recursively evaluates the time required to compute the 

minimum cost needed to multiply a specific sequence and save 

it. This dynamic approach is a powerful tool for algorithms and 

is used in many other problems like knapsack problem, 

travelling salesman problem etc. In this paper an alternate 

approach has been described to calculate the minimum cost 

required to compute the chain multiplication using greedy 

approach. The proposed method is named as Greedy MCM. 

The paper is organized in following sections. First a brief 

introduction is given about what is matrix chain multiplication 

problem and how to calculate the cost of multiplying the chain 

matrices. Second, the traditional approach using dynamic 

solution is discussed. The next three sections define the 

proposed algorithm G_MCM and explain the working using 

some examples.The paper ends with some tables and graphs 

displaying computational results of the proposed method and 

comparing those with dynamic approach. 

II. OVERVIEW OF MATRIX CHAIN 

MULTIPLICATION PROBLEM  

Consider the problem of evaluating the product of n matrices 

M = M1 * M2 *………….*Mn 

 

whereMi is a matrix of the order mxn and M(i+1) is a matrix of 

order nxp. The product N = Mi*M(i+1) is a mxp matrix. This N 

can be computed in time O(mnp). For example, let there be 4 

matrices named A, B, C, D of the order (2x3), (3x4), (4x5), 

(5x6) respectively. Now  

M = A*B*C*D 

Since matrix multiplication is associative, the order in which 

the above chain multiplication is evaluated does not affect the 

final result. The matrix can be multiplied in the following 

orders: ((AB)C)D, (AB)(CD), A((BC)D), (A(BC))D, 

A(B(CD)).  
The problem is not actually to perform the multiplication, 

but to decide the order in which multiplications needs to be 
performed. Because this order in which the product of matrices 
is parenthesized affects the number of simple arithmetic 
operations needed to compute the product, or the efficiency [8]. 
Let us evaluate the number of arithmetic operations performed 
for all the above mentioned parenthesizations –  

((AB)C)D = 2x3x4 + 2x4x5 + 2x5x6 = 124 

(AB)(CD) = 2x3x4 + 4x5x6 + 2x4x6 = 192 

A((BC)D) = 3x4x5 + 3x5x6 + 2x3x6 = 186 

(A(BC))D = 3x4x5 + 2x3x5 + 2x5x6 = 150 

A(B(CD)) = 4x5x6 + 3x4x6 + 2x3x6 = 228 

Clearly the first method is more efficient in all. This gives a 

picture as the number of operations termed as scalar 

multiplications is affected by the order in which the product is 

computed. Thus, the number of scalar operations required 

depends on optimal parenthesis order. Now in order to 

determine the optimal parenthesis order, we can proceed in 

many ways. One is brute force method where we calculate the 

number of operations of all the possible parenthesis order and 

find the least amongst them. But it will be impractical and time 

consuming as the time complexity of such approach will be 

� . The traditional approach i.e dynamic solution [1][2][3], 

reduces this time of � further to � which looks decent 

and of practical use. 

 

Raghav Lakhotia
#1

, Sanjeev Kumar
#2

, Rishabh Sood
#3

, Harmeet Singh
#4

, Javaid Nabi
#5

 
#1,#3,#4,#5

Samsung Research Institute, Bangalore, India 
#2

Amazon, India 
#2
Amazon India 

#3, #4, #5
Samsung Research Institute, Bangalore, India 

 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 23 Number 2 – May 2015 

ISSN: 2231-2803                             http://www.ijcttjournal.org                                 Page 66 

III. DYNAMIC APPROACH 

As described above, the cost of multiplying a chain of n 
matrices M1M2…..Mn depends on the order in which the n−1 
multiplications are carried out. Here we will discuss in brief 
about the dynamic approach for the matrix chain multiplication 
problem as described in [1][7]. 

In general, the number of orderings is equal to the number 
of ways to place parentheses to multiply the n matrices in every 
possible way. Let f(n) be the number of ways to fully 
parenthesize a product of n matrices. Suppose we want to 
perform the multiplication 

(M1M2 ...Mk) × (Mk+1Mk+2 ...Mn). 
Then, there are P(k) ways to parenthesize the first k matrices. 
For each one of the P(k) ways, there are P(n-k) ways to 
parenthesize the remaining n-k matrices, thus for a total of 
P(k)P(n - k) ways. Since k can be assumed any value between 
1 and n – 1, the overall number of ways to parenthesize the n 
matrices is given by the summation: 

 

 
(Using Catalan numbers and Stirlings’ formula)[1]. 
In dynamic approach, the cost of multiplying two matrices 
together is done in a recursive way which can be represented as 
–  
 

 

 
The algorithm for the same using dynamic approach can be 
found in [1]. Thus, time and space complexities of the 
algorithm are easy to calculate. For constant c > 0, the running 
time T(n) of algorithm is proportional to:  
 

 

 
Similarly space complexity of the algorithm is:  
 

 

 
 

IV. PROPOSED ALGORITHM USING GREEDY 

APPROACH 

This section presents a solution for the problem to determine 

the minimum number of scalar multiplications performed for 

the matrix chain multiplication problem using greedy approach. 

To obtain optimal solution, we modify the greedy approach in 

combination with divide and conquer strategy and get an 

algorithm which can calculate the multiplication order in 

� time which is very fast as compared to dynamic 

programming solution. In the proposed algorithm the main idea 

is to solve the problems in a top down fashion (divide and 

conquer).  
 
ALGORITHM: G_MCM(x, y) 
Description: G_MCM means Greedy approach for matrix chain 
multiplication(MCM) 
Input:  p = array containing the matrices dimensions. 
x, y = starting and ending index. 
Output: Parenthesized representation of the product of n 
matrices. 
 
G_MCM(x, y) 
(1)key=arb            //where p[arb] is infinity 

(2)if x== (y-1) 

(3)  Print "A"+char(y) 

(4)else if x== (y-2) 

(5)  Print "("+"A"+char(x+1)+"A"+char(y+1)+")" 

(6)else 

(7) fori = x+1 down to y-1 

(8)  do if p[key]>p[i] 

(9)   key=i 

(10) if p[x]!=p[y] 

(11)  do if p[x] < p[key] 

(12)   key=x 

(13) if p[y]<p[key] 

(14)  key=y 

(15) if key==x     

(16)Print"("+G_MCM(x,y-1)+G_MCM(y-,y)+")" 

(17) else if key==y 

(18)Print"("+G_MCM(x,x+1)+ G_MCM(x+1,y)+")" 

(19) else 

(20)Print"("+G_MCM(x,key)+G_MCM(key,y)+")" 
 
The arguments x and y denotes the two indices of the order 

array p[0…..n]. The feature of the algorithm is to divide the 

array p into n sub-array, each containing at least 1 or at most 2 

elements. This process of division is done in a greedy manner. 

At each step only least value is selected among all elements of 

in the array p[x, y], so that the multiplication cost is kept 

minimum at each step. This greedy approach ensures that the 

solution is optimal with least cost involved and the output is a 

fully parenthesized product of matrices. With every division, 

we put parenthesis around the matrices. 
 

A. Complexity Analysis 

In the above algorithm, we are dividing the problem into a 

number of sub problems recursively, each sub problem being 

of size n/b. This can be visualized as building a call tree with 

each node of the tree as an instance of one recursive call and 

its child nodes being instances of subsequent calls. In the 

above algorithm, each node would have a number of child 

nodes. Each node does an amount of work that corresponds to 

the size of the sub problem n passed to that instance of the 

recursive call and given by f(n). The total amount of work 

done by the entire tree is the sum of the work performed by all 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 23 Number 2 – May 2015 

ISSN: 2231-2803                             http://www.ijcttjournal.org                                 Page 67 

the nodes in the tree. This recursive relation is presented by 

Master Theorem [5] –  

 

 

 

The constants denotes –  

n is the size of the problem. 

a is the number of sub problems in the recursion. 

n/b is the size of each sub problem. 

f(n) is the cost of the work done outside the recursive calls, 

which includes the cost of dividing the problem and the cost of 

merging the solutions to the sub problems. 

 

There are following three cases –  

1. If f(n) = where c <  then T(n) =Θ  

2. If f(n)= where c =  then T(n) =�  

3. If f(n) = where c >  then T(n) = �  

 

 

1) Best Case –  

In best case, each recursive call will divide the array in two 

equal parts. The recurrence relation for this case can be given 

as –  

 

 

The above algorithm falls in case 2 as f(n) i.e. the cost of 

dividing the array into sub-arrays is done in linear fashion and 

hence c = 1. This implies  is also 1. Hence the solution 

is � . 

 

2) Average Case –  

In average case, each recursive call will divide the array into 

(N-I-1) and I parts where Iranges from 1 to N-2. We note that 

average number of comparisons to find the min keyis N-

2.Thus we take the average of all the number of comparisons 

done over possiblecombinations of the input sequence. This 

can be estimated accurately by solving the recurrence relation –  

 

 

 

On solving the above recursive relation we get 

. Hence the average time complexity of the 

proposed G_MCM algorithm is � . 

 

3) Worst Case – 

In worst case, each recursive call divides the array into only 

(N-1) and 1 part. The recurrence relation for this case can be 

given as –  

 

 

 
 

where f(n) is the cost of the work done outside the recursive 

calls, which includes the cost of finding the minimum key and 

dividing the problem. Using equation (5) of Master‟s 

Theorem, time complexity for worst case is � . 
The multiplication order of the matrices can be denoted by 

recursive approach presented as  

 

 

 

Where x, y denote the starting and ending index of the array P. 

The notation A(x) denotes the matrix number i.e. matrix 1 or 

matrix 2. 
 

V. NUMERICAL RESULT AND ANALYSIS 

Consider the chain of five matrices <A1, A2, A3, A4, A5>of  

dimension 20x12, 12x17, 17x5, 5x23, 23x7 respectively.  

Now going through G_ MCM, defined in equation (9), the 

required result can be obtained as per the below steps. 

 

P = <P0, P1, P2, P3, P4, P5> = <20, 12, 17, 5, 23, 7> 

Step 1: P[key] = ∞. Key set to 3, hence,  

G_MCM (0, 5) = G_MCM (0, 3) + G_MCM (3, 5)  

Step 2:G_MCM (0, 3) = G_MCM (0, 1) + G_MCM (1, 3) 

Step 3:G_MCM (0, 1) = A1 

Step 4:G_MCM (1, 3) = (A2xA3) 

Step 5:G_MCM (3, 5) = (A4xA5) 

Step 6:G_MCM (0, 5) = ((A1x(A2xA3))x(A4xA5)) 

On solving the same example using the dynamic approach, the 

solution would be ((A1(A2A3))(A4A5)). Hence the cost 

incurred by both the methods is same. 
 

A. Special Case 

It has been observed that the above proposed algorithm will 

work fine when the elements in the array p are all distinct and 

will give the optimal solution. But when the smallest element 

of array p will occur more than once then there are some 

chances that the above algorithm may fail to give the optimal 

solution. But it is guaranteed that the matrix chain 

multiplication cost of the ordering obtained by above 

algorithm would not exceed the optimal solution‟s cost by 

more than 25 percent.  

Example –  

Consider the chain of five matrices <A1, A2, A3, A4, A5> of 

dimension 3x4, 4x3, 3x6, 6x3, 3x7 respectively.  

Now going through G_ MCM, defined in equation (1), the 

required result can be obtained as per the below steps. 

P = <P0, P1, P2, P3, P4, P5> = <3, 4, 3, 6, 3, 7> 

Here, P0, P2 and P4 have same values as 3. On applying the 

above given algorithm on this array we will get the order of 

matrix multiplication in the following steps –  

 

Step 1: P[key] = ∞, key set to 2 

Hence,G_MCM (0,5)=G_MCM (0,2)+G_MCM (2, 5) 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 23 Number 2 – May 2015 

ISSN: 2231-2803                             http://www.ijcttjournal.org                                 Page 68 

Step 2:G_MCM (0,2) = (A1xA2) 

Step 3:G_MCM (2, 5) = G_MCM (2, 4) + G_MCM (4, 5) 

Step 4:G_MCM (2, 4) = (A3xA4) 

Step 5:G_MCM (4, 5) = A5 

Step 6:G_MCM (0, 5) = ((A1xA2)x((A3A4)xA5)) 

Multiplication Cost = 216 

 

When we solve the same example using the dynamic approach 

the solution for the same set of matrices would be(((A1A2 

)(A3A4)) A5)). Multiplication Cost =180 

The above proposed algorithm found to be 20% more costly 

than the optimal solution using dynamic approach in cases 

when the dimensions of some of the matrices are same. This 

extra cost is due to the fact that the above algorithm did not 

chosen the correct least value (here 3) out of its three 

occurrences. This proposed algorithm can be modified for 

handling this kind of special cases in future. 

 

B.  Analysis of Implementation of G_MCM Algorithm 

The results for implementation of G_MCM algorithm 

foroptimal solution to matrix multiplication problem are 

shown in Table I, II,III and IV. The number ofmatrices is 1-10 

in table I, II, III and 1-18 in table IV. While the sequence of 

dimensions varies from 1-10, 1-25, 1-100 and 1-400 

respectively in table I, II, III and IV. Online applet “Compare 

Dynamic Programming and Greedy Approach” for matrix 

chain multiplication problem has been implemented by the 

authors and can be used to test other results [6].Figures 

include the graph in two parts. Part „a‟ of figure shows the 

comparison between multiplication cost and number of 

matrices for Dynamic programming (in blue) and Greedy 

Algorithm (in red).Part „b‟ of figure compares the run time 

cost and the number of matrices for both the algorithm. In 

Figure 1, number of matrices and sequence of dimensions 

varies from 3-10 and 100-200 respectively. In Figure 

2,number of matrices and sequence of dimensions variesfrom 

3-20 and 200-400 respectively. Input includes numberof 

matrices and then the dimensions of each matrix. Thecolumn 

of matrix A must be equal to the row of matrix Bfor all the 

dimensions. 

 Analyzing tables I, II, III, IV and graphs, it is evidentthat the 

multiplication cost for both the algorithms is almost same. But 

there is considerable amount of runtime cost reduction in case 

of Greedy MCM algorithm as compared to dynamic MCM 

approach as the number of matrices and the dimension of 

matrices increases. 
 

VI. COMPARISON STUDY 

So far we have demonstrated an algorithm that computes the 

optimal cost for multiplying a chain of matrices. 

Table V summarizes the main results. It denotes that time 

complexity of proposed algorithm i.e. G_MCM is less 

compared to Dynamic programming technique. The same is 

true when we compare space complexities of both methods. 

 

TABLE V- COMPLEXITIES FOR DIFFERENT APPROACHES 

 Traditional 

Approach 

DP 

Approach 

Proposed 

Method 

Time 

Complexity 
� (n

3
) � (n

3
) � (nlogn) 

Space 

Complexity 
� (n

2
) � (n

2
) � (n) 

 

VII. CONCLUSION 

Matrix Chain Multiplication problem is not actually to 

perform the multiplications, but merely to decide the order to 

perform the multiplications. We  have  presented  a  different  

approach  to  determine an  optimal multiplication order  for a  

chain  of matrix products. We  have shown  that,  using  this  

approach,  an  optimal order  can be  determined  in  time  

� if the matrices are of different orders or can have 

approximately same solution as optimal solution otherwise. 

The above described technique is very efficient than existing 

approaches. It can be applied to any type of matrices 

successful. Finally,  the  proposed  technique  should  be  

viewed more  as  a  complement  than  as  an  alternative  to  

existing methods,  to be  used  in  all  those  cases where  the  

other techniques  cannot  be employed  efficiently. The 

working of the proposed algorithm can be visualized and 

tested for different inputs through an applet [6] developed by 

the authors. 

REFERENCES 

[1] Thomas H. Cormen, Charles E. Leiserson , Ronald L. Rivest, Clifford 

Stein, Introduction To Algorithms, The MIT Press. 

 
[2] Aho, A.V., Hopcroft, J.E., and Ullman,  J.DThe Design and Analysis of 

Computer Algorithms. Addison-Wesley, Reading, MA, 1974. 

 
[3] Chin, F.Y. “An O(n) algorithm  for determining a near optimal  

computation  order of matrix chain product.”Cemmun. ACM 21, 7 July1978, 

pp. 544-549.  
 

[4] Nicola Santoro, “Chain Multiplication of Matrices of Approximately or 

exactly the same size.”, February 1984  Volume 27  Number 2. 
 

[5] Chee Yap, “A Real Elementary Approach to the MasterRecurrence and 

Generalizations.”,  8th Annual Conference, TAMC 2011, Tokyo, Japan. 
 

[6] Sanjeev Kumar, RaghavLakhotia, RishabhSood, HarmeetSingh– 

“Compare Dynamic Programming and Greedy Matrix Chain Multiplication 
Algorithm” , available at url - http:// mcm-

ssnk.rhcloud.com/compareAlgo.html 

 
[7] Muhammad Hafeez, Muhammad Younus, “An Effective Solution for 

Matrix Parenthesization Problem through Parallelization”, International 
Journal of Computers, Issue 1, Vol. 1, 2007. 

 

[8] T. C. Hu, M. T. Shirig, “Computation of Matrix ChainProducts”, Stanford 
University, September 1981. 

 

[9] Deimel, L.E., and Lampe T.A. “An invariance  theorem concerning 
optimal  computation  of matrix chain products.”  Rep. TR79-14, North 

Carolina  State Univ., Raleigh, NC, 1979. 

 
[10]Sadashiva S. Godbole “An Efficient computation of matrix chain 

products”. IEEE Trans. Comput. C-22, 9 Sept. 1973, 864-866. 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 23 Number 2 – May 2015 

ISSN: 2231-2803                             http://www.ijcttjournal.org                                 Page 69 

*M Cost refers to Multiplication Cost 

*R Cost refers to Runtime Cost 
 

TABLE I - IMPLEMENTATION OF GREEDY MCM  PARENTHESIZATION ALGORITHM, NO. OF MATRICES:1-10, SEQUENCE OF DIMENSIONS:1-10 

No. of 

Matrix 

Sequence of 

Dimensions 

Parameters Using Greedy Approach Parameters Using Dynamic Approach % 

Difference 

(b-a)/b*100 

  M 

Cost* 

Parenthesization R 

Cost* 

(a) 

M 

Cost* 

Parenthesization R 

Cost* 

(b) 

 

3 9,8,3,3 297 ((A0A1)A2) 4106 288 (A0(A1A2)) 9235 55.5 

4 2,10,9,6,7 372 (((A0A1)A2)A3) 2155 372 (((A0A1)A2)A3) 4785 54.9 

5 9,7,6,2,1,7 180 ((A0(A1(A2A3)))A4) 2246 180 ((A0(A1(A2A3)))A4) 3205 29.9 

6 4,4,6,10,7,6,10 1024 (((((A0A1)A2)A3)A4)A5) 1924 1024 ((A0(((A1A2)A3)A4))A5) 3778 49.0 

7 5,6,3,5,8,5,8,7 723 ((A0A1)((((A2A3)A4)A5)A6)) 1523 723 ((A0A1)((((A2A3)A4)A5)A6)) 4011 62.0 

8 4,6,5,9,9,7,2,1,6 281 ((A0(A1(A2(A3(A4(A5A6))))))A7) 2462 281 ((A0(A1(A2(A3(A4(A5A6))))))A7) 4808 48.7 

9 1,5,7,5,8,1,3,4,4,10 189 ((((((((A0A1)A2)A3)A4)A5)A6)A7)A8) 2072 186 (((((A0(A1(A2(A3A4))))A5)A6)A7)

A8) 

7219 71.2 

 

 

 
TABLE II - IMPLEMENTATION OF GREEDY MCM  PARENTHESIZATION ALGORITHM, NO. OF MATRICES:1-10, SEQUENCE OF DIMENSIONS:1-25 

No. of 

Matrix 

Sequence of 

Dimensions 

Parameters Using Greedy Approach Parameters Using Dynamic Approach % 

Difference 

(b-a)/b*100 

  M 

Cost* 

Parenthesization R 

Cost* 

(a) 

M 

Cost* 

Parenthesization R 

Cost* 

(b) 

 

3 16,13,4,9 1408 ((A0A1)A2) 4029 1408 ((A0A1)A2) 11227 64.1 

4 23,21,2,24,21 2940 ((A0A1)(A2A3)) 1066 2940 ((A0A1)(A2A3)) 3856 72.3 

5 6,12,14,2,12,14 984 ((A0(A1A2))(A3A4)) 1509 984 ((A0(A1A2))(A3A4)) 3408 55.7 

6 22,16,23,2,3,6,9 1980 ((A0(A1A2))((A3A4)A5)) 1624 1980 ((A0(A1A2))((A3A4)A5)) 3224 49.6 

7 12,10,12,10,7,5,18,

15 

4400 ((A0(A1(A2(A3A4))))(A5A6)) 1940 4400 ((A0(A1(A2(A3A4))))(A5A6)) 4208 53.8 

8 1,8,21,7,20,18,1,8,

1 

849 (((((((A0A1)A2)A3)A4)A5)A6)A7) 2252 831 ((((A0A1)A2)(A3(A4A5)))(A6A7)) 4543 50.4 

9 2,21,9,25,16,2,14,6

,23,24 

3296 ((((((((A0A1)A2)A3)A4)A5)A6)A7)A8) 3015 3236 (((((A0A1)(A2(A3A4)))(A5A6))A7)

A8) 

8993 66.4 

 

 

 

 

 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 23 Number 2 – May 2015 

ISSN: 2231-2803                             http://www.ijcttjournal.org                                 Page 70 

TABLE III - IMPLEMENTATION OF GREEDY MCM  PARENTHESIZATION ALGORITHM, NO. OF MATRICES:1-10, SEQUENCE OF DIMENSIONS:1-100 

No. of 

Matrix 

Sequence of 

Dimensions 

Parameters Using Greedy Approach Parameters Using Dynamic Approach % 

Difference 

(b-a)/b*100 

  M  

Cost* 

Parenthesization R 

Cost* 

(a) 

M  

Cost* 

Parenthesization R 

Cost* 

(b) 

 

3 92,34,59,62 318308 (A0(A1A2)) 3146 318308 (A0(A1A2)) 8068 61.0 

4 42,88,100,66,32 611072 (A0(A1(A2A3))) 1634 611072 (A0(A1(A2A3))) 3110 47.4 

5 13,22,35,42,77,91 162253 ((((A0A1)A2)A3)A4) 2534 162253 ((((A0A1)A2)A3)A4) 5587 54.6 

6 40,21,72,25,2,45,1 4292 (A0(A1(A2(A3(A4A5))))) 2863 4292 (A0(A1(A2(A3(A4A5))))) 6311 54.6 

7 15,24,13,82,62,41,

18,22 

122850 ((A0A1)((((A2A3)A4)A5)A6)) 2856 122850 ((A0A1)((((A2A3)A4)A5)A6)) 6613 56.8 

8 78,81,12,4,71,66,9

7,86,5 

110160 ((A0(A1A2))((((A3A4)A5)A6)A7)) 2691 110160 ((A0(A1A2))((((A3A4)A5)A6)A7)) 7276 63.0 

9 65,66,56,27,44,47,

40,88,65,70 

817398 ((A0(A1A2))(((((A3A4)A5)A6)A7)A8)

) 

3106 817398 ((A0(A1A2))(((((A3A4)A5)A6)A7)

A8)) 

8471 63.3 

 
TABLE IV - IMPLEMENTATION OF GREEDY MCM  PARENTHESIZATION ALGORITHM, NO. OF MATRICES:1-18, SEQUENCE OF DIMENSIONS:1-400 

No. of 

Matrix 

Sequence of 

Dimensions 

Parameters Using Greedy Approach Parameters Using Dynamic Approach % 

Difference 

(b-a)/b*100 

  M  

Cost* 

Parenthesization R 

Cost* 

(a) 

M  

Cost* 

Parenthesization R 

Cost* 

(b) 

 

3 259,290,67,366 11383568 ((A0A1)A2) 4274 11383568 ((A0A1)A2) 9060 52.8 

6 84,47,145,20,312,1

90,141 

2173540 ((A0(A1A2))((A3A4)A5)) 2300 2173540 ((A0(A1A2))((A3A4)A5)) 5209 55.8 

9 388,308,294,27,33

1,289,23,17,259,15

1 

7257878 ((A0(A1(A2(A3(A4(A5A6))))))(A7

A8)) 

3833 7257878 ((A0(A1(A2(A3(A4(A5A6))))))(

A7A8)) 

9912 61.3 

12 278,303,238,308,2

48,379,189,296,20

9,364,231,366,400 

182233422 ((A0(A1(A2(A3(A4A5)))))(((((A6A

7)A8)A9)A10)A11)) 

4114 178661469 ((A0(A1(A2(A3(A4A5)))))((((A

6A7)(A8A9))A10)A11)) 

13838 70.2 

15 96,121,339,238,21

3,66,379,176,5,231

,41,96,33,125,82,4

1 

1640175 ((A0(A1(A2(A3(A4(A5(A6A7))))))

)((((((A8A9)A10)A11)A12)A13)A1

4)) 

4999 1640175 ((A0(A1(A2(A3(A4(A5(A6A7))

)))))((((((A8A9)A10)A11)A12)

A13)A14)) 

20631 75.7 

18 310,94,219,303,39

1,291,360,351,217,

235,275,240,90,23

4,273,41,46,59,64 

39774756 ((A0(A1(A2(A3(A4(A5(A6(A7(A8(

A9(A10(A11(A12(A13A14))))))))))

))))((A15A16)A17)) 

 

7104 39774756 ((A0(A1(A2(A3(A4(A5(A6(A7(

A8(A9(A10(A11(A12(A13A14)

)))))))))))))((A15A16)A17)) 

 

27547 74.2 

 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 23 Number 2 – May 2015 

ISSN: 2231-2803                             http://www.ijcttjournal.org                                 Page 71 

 

 
 

Fig -1a Multiplication Cost v/s Number of matrices comparison between Greedy MCM and Dynamic MCM.  

            Matrix Count: 3-10, Sequence of dimensions: 100-200. 

 

 
Fig -1bRuntime Cost v/s Number of matrices comparison between Greedy MCM and Dynamic MCM.  

 Matrix Count: 3-10, Sequence of dimensions: 100-200. 

 

 

 

 

 

 

 

 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 23 Number 2 – May 2015 

ISSN: 2231-2803                             http://www.ijcttjournal.org                                 Page 72 

 

 
Fig -2a Multiplication Cost v/s Number of matrices comparison between Greedy MCM and Dynamic MCM.  

             Matrix Count: 3-20, Sequence of dimensions: 200-400. 

 

 
Fig -2b Runtime Cost v/s Number of matrices comparison between Greedy MCM and Dynamic MCM.  

             Matrix Count: 3-20, Sequence of dimensions: 200-400. 

 

http://www.ijcttjournal.org/

