
International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015 

ISSN: 2231-2803                               http://www.ijcttjournal.org                                Page 80 

Literature Survey for the Comparative Study of Various High 

Performance Computing Techniques 
Zahid Ansari

1
, Asif Afzal

2
, Moomin Muhiuddeen

 3
, Sudarshan Nayak

4
 

1,3,4
Department of Computer Science, P. A. College of Engineering 

2
Research Scholar, Department of Mechanical Engineering, P. A. College of Engineering 

Mangaluru, Karnataka, India-574153  
 

Abstract — The advent of high performance 

computing (HPC) and graphics processing units 

(GPU), present an enormous computation resource 

for large data transactions (big data) that require 

parallel processing for robust and prompt data 

analysis. In this paper, we take an overview of four 

parallel programming models, OpenMP, CUDA, 

MapReduce, and MPI. The goal is to explore 

literature on the subject and provide a high level view 

of the features presented in the programming models 

to assist high performance users with a concise 

understanding of parallel programming concepts. 

 
Keywords — OpenMP, MPI, CUDA, MapReduce, 

GPU. 

I. INTRODUCTION 

We often happen to meet problems requiring 

heavy computations or data-intensive processing. The 

increasing volume of data generated by entities 

unquestionably, require high performance parallel 

processing models for robust and speedy data analysis.  

With problem size and complexity increasing, the 

need for parallel computing has resulted in a number 

of programming models proposed for high 

performance computing. Several parallel and 

distributed programming models and frameworks have 

been developed to efficiently handle such problems.  

 

In this paper, we take an overview of four high 

performance computing techniques, OpenMP, CUDA, 

MapReduce and MPI. Thirdly Eigen series are used to 

train the system and finally decision is made by means 

of matching. 

 

The paper is organized in the following as follows: 

Section II presents a review of the latest literatures on 

the various high performance computing techniques. 

Section III represents the methodologies used in the 

respective high performance computing techniques. 

Section IV presents the comparative analysis of the 

high performance computing techniques. A brief 

conclusion is presented in section V. 

 

II. LITERATURE REVIEW 

As the high performance computing techniques 

have increasingly become a necessity in mainstream 

computing, a number of researchers have done work 

on documenting various features in parallel computing 

models. Although a number of features in parallel 

programming models are discussed in literature, 

OpenMP, CUDA, MapReduce, and MPI models, 

utilize multi-threading and, as such, a look at 

abstraction and determinism in multi-threading is 

given consideration in this paper.  

A. OpenMP 

OpenMP is a shared-memory multiprocessing 

Application Program Inference (API) for easy 

development of shared memory parallel programs [1]. 

It provides a set of compiler directives to create 

threads, synchronize the operations, and manage the 

shared memory on top of pthreads. The programs 

using OpenMP are compiled into multithreaded 

programs, in which threads share the same memory 

address space and hence the communications between 

threads can be very efficient. Its runtime maintains the 

thread pool and provides a set of libraries [3]. It uses a 

block-structured approach to switch between 

sequential and parallel sections, which follow the 

fork/join model. At the entry of a parallel block, a 

single thread of control is split into some number of 

threads, and a new sequential thread is started when 

all the split threads have finished. Its directives allow 

the fine-grained control over the threads [2]. Y.Charlie 

Hu, Honghui Lu, Alan L Cox and Willy Zwaenepoel 

(1999), presented the first system that implemented 

OpenMP on a network of shared memory 

multiprocessors. The system enables the programmer 

to rely on a single, standard shared-memory API for 

parallelization within a multiprocessor and between 

multiprocessors which is implemented via a 

translation that converts OpenMP directives to 

appropriate calls to a modified version of the 

TrendMarks software distributed shared memory 

(SDSM) system. This approach greatly simplifies the 

changes required to the SDSM in order to exploit the 

intra node hardware shared memory [12]. John 

Bircsak, Peter Craig, RaeLyn Crowell, Zarka 

Cvetanovic, Jonathan Harris, C. Alexander Nelson and 

Carl D. Offner (2000), in their paper, describes 

extensions to OpenMP that implement data placement 

features needed for Non-Uniform Memory Access 

(NUMA) architectures. Writing efficient parallel 

programs for NUMA architectures, which have 

characteristics of both shared-memory and distributed-

memory architectures, requires that a programmer 

control the placement of data in memory and the 

placement of computations that operate on that data. 

http://www.ijettjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015 

ISSN: 2231-2803                               http://www.ijcttjournal.org                                Page 81 

Optimal performance is obtained when computations 

occur on processors that have fast access to the data 

needed by those computations. OpenMP—designed 

for shared-memory architectures—does not by itself 

address these issues. The extensions to OpenMP 

Fortran presented here have been mainly taken from 

High Performance Fortran. The paper describes some 

of the techniques that the Compaq Fortran compiler 

uses to generate efficient code based on these 

extensions. It also describes some additional compiler 

optimizations, and concludes with some preliminary 

results [13]. It is supported on various platforms like 

UNIX, LINUX, and Windows and various languages 

like C, C++, and Fortran [2]. 

Some of the advantages of OpenMP are- 

1) OpenMP is much easier to use because the 

compiler takes care of transforming the sequential 

code into parallel code according to the directives 

[2]. 

2) The programmer can write multithreaded 

programs without serious understanding of 

multithreading mechanism [1]. 

 

B. MPI 

MPI is a message passing library specification 

which defines an extended message passing model for 

parallel, distributed programming on distributed 

computing environment [4]. In their paper, Zaid Abdi 

Alkareem Alyasseri , Kadhim Al-Attar, Mazin Nasser 

and Ismail (2014), they implemented the bubble and 

merge sort algorithms using Message Passing 

Interface (MPI) approach. The proposed work tested 

on two standard datasets (text file) with different size. 

The main idea of the proposed algorithm is 

distributing the elements of the input datasets into 

many additional temporary sub-arrays according to a 

number of characters in each word. The sizes of each 

of these sub-arrays are decided depending on a 

number of elements with the same number of 

characters in the input array. They have implemented 

MPI using Intel core i7-3610QM, (8 CPUs), using two 

approaches (vectors of string and array 3D). Finally, 

they get the data structure effects on the performance 

of the algorithm for that they choice the second 

approach [14]. Pavan Balaji, Darius Buntinas, David 

Goodell, William Gropp, Torsten Hoefler, Sameer 

Kumar, Ewing Lusk, Rajeev Thakur and Jesper 

Larsson Traff (2011), in their paper, they examine the 

issue of scalability of MPI to very large systems. They 

first examine the MPI specification itself and discuss 

areas with scalability concerns and how they can be 

overcome. They then investigate issues that an MPI 

implementation must address in order to be scalable. 

To illustrate the issues, they ran a number of simple 

experiments to measure MPI memory consumption at 

scale up to 131,072 processes, or 80%, of the IBM 

Blue Gene/P system at Argonne National Laboratory. 

Based on the results, they identified non-scalable 

aspects of the MPI implementation and found ways to 

tune it to reduce its memory footprint. They also 

briefly discuss issues in application scalability to large 

process counts and features of MPI that enable the use 

of other techniques to alleviate scalability limitations 

in applications [15].  

Some of the advantages of MPI are- 

1) MPI is fine matched for applications where 

portability in time and space is significant [3].  

2) MPI is as well a brilliant selection for parallel 

computations and for areas involving data 

structures, such as unstructured mesh 

computations which are dynamic [3]. 

 

C. MapReduce 

MapReduce is a programming paradigm to use 

Hadoop which is recognized as a representative big 

data processing framework. Hadoop clusters consist of 

up to thousands of commodity computers and provide 

a distributed file system called HDFS which can 

accommodate big volume of data in a fault-tolerant 

way. The clusters become the computing resource to 

facilitate big data processing [6]. In their paper, Colby 

Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary 

Bradski and Christos Kozyrakis (2007), evaluates the 

suitability of the MapReduce model for multi-core and 

multi-processor systems [16]. MapReduce was created 

by Google for application development on data-

centres with thousands of servers. It allows 

programmers to write functional-style code that is 

automatically parallelized and scheduled in a 

distributed system. They describe Phoenix, an 

implementation of MapReduce for shared-memory 

systems that includes a programming API and an 

efficient runtime system. The Phoenix runtime 

automatically manages thread creation, dynamic task 

scheduling, data partitioning, and fault tolerance 

across processor nodes. They study Phoenix with 

multi-core and symmetric multiprocessor systems and 

evaluate its performance potential and error recovery 

features. They also compared MapReduce code to 

code written in lower-level APIs such as Pthreads. 

Overall, they establish that, given a careful 

implementation, MapReduce is a promising model for 

scalable performance on shared-memory systems with 

simple parallel code [16]. Hung-chih Yang, Ali 

Dasdan, Ruey-Lung Hsiao and D. Stott Parker (2007), 

in their paper, they improve Map-Reduce into a new 

model called Map-Reduce-Merge [17]. It adds to 

Map-Reduce a Merge phase that can efficiently merge 

data already partitioned and sorted (or hashed) by map 

and reduce modules. They also demonstrate that this 

new model can express relational algebra operators as 

well as implement several join algorithms [17]. 

Some of the advantages of MapReduce are- 

1) MapReduce paradigm is a good choice for big 

data processing because it handles data record 

without loading whole data into memory and in 

addition the program is executed in parallel over a 

cluster [8].  

2) It is very convenient to develop big data handling 

programs using MapReduce because Hadoop 

http://www.ijettjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015 

ISSN: 2231-2803                               http://www.ijcttjournal.org                                Page 82 

provides everything needed for distributed and 

parallel processing behind the scene which 

program does not need to know [8]. 

 

D. CUDA 

CUDA also known as Compute Unified Device 

Architecture was developed in 2006 by NVIDIA as a 

general purpose parallel computing programming 

model, to run on NVIDIA GPUs to for parallel 

computations [10]. With CUDA, Programmers are 

granted access to GPU memory and therefore, are able 

to utilize parallel computation not only for graphic 

application but general purpose processing (GPGPU) 

[11]. One of the challenges of HPCs is how to fully 

take the parallelism advantage presented by the multi-

core CPUs and many-core GPUs [10]. In their paper, 

Wladimir J. van der Laan, Andrei C. Jalba, and Jos 

B.T.M. Roerdink (2010), they show that the Discrete 

Wavelet Transform (DWT) which has a wide range of 

applications from signal processing to video and 

image compression, by means of the lifting scheme, 

can be performed in a memory and computation-

efficient way on modern, programmable GPUs, which 

can be regarded as massively parallel coprocessors 

through NVidia‘s CUDA compute paradigm [18]. The 

three main hardware architectures for the 2D DWT 

(row-column, line-based, block-based) are shown to 

be unsuitable for a CUDA implementation. Their 

CUDA-specific design can be regarded as a hybrid 

method between the row-column and block-based 

methods. They achieve considerable speedups 

compared to an optimized CPU implementation and 

earlier non-CUDA-based GPU DWT methods, both 

for 2D images and 3D volume data. Additionally, 

memory usage can be reduced significantly compared 

to previous GPU DWT methods. The method is 

scalable and the fastest GPU implementation among 

the methods considered. A performance analysis 

shows that the results of their CUDA-specific design 

are in close agreement with their theoretical 

complexity analysis [18]. Jedrzej Kowalczuk, Eric T. 

Psota, Lance C. Pérez (2012), in their paper, A novel 

real-time stereo matching method is presented that 

uses a two-pass approximation of adaptive support-

weight aggregation, and a low-complexity iterative 

disparity refinement technique [19]. Through an 

evaluation of computationally efficient approaches to 

adaptive support weight cost aggregation, it is shown 

that the two-pass method produces an accurate 

approximation of the support weights while greatly 

reducing the complexity of aggregation. The 

refinement technique, constructed using a probabilistic 

framework, incorporates an additive term into 

matching cost minimization and facilitates iterative 

processing to improve the accuracy of the disparity 

map. This method has been implemented on massively 

parallel high-performance graphics hardware using the 

CUDA computing engine. Results show that the 

proposed method is the most accurate among all of the 

real-time stereo matching methods listed on the 

Middlebury stereo benchmark [19]. 

 

Some of the advantages of CUDA are- 

1) CUDA allows use of high level language such as 

C to developers by providing a software 

environment [3]. 

2) CUDA programming language is designed to 

surmount the challenge of parallel computing by 

taking gain of parallelization in both CPUs and 

GPUs [11]. 

III.   METHODOLOGIES 

 

A.  OpenMP  

The OpenMP API [20, 21] defines a set of 

program directives that enable the user to annotate a 

sequential program to indicate how it should be 

executed in parallel. There are three kinds of 

directives: parallelism/work sharing, data 

environment, and synchronization. In C and C++, the 

directives are implemented as #pragma statements, 

and in Fortran 77 and 90 they are implemented as 

comments. OpenMP is based on a fork-join model of 

parallel execution. The sequential code sections are 

executed by a single thread, called the master thread. 

The parallel code sections are executed by all threads, 

including the master thread.  

 

The fundamental directive for expressing 

parallelism is the parallel directive. It defines a 

parallel region of the program that is executed by 

multiple threads. All of the threads perform the same 

computation, unless a work sharing directive is 

specified within the parallel region. Work sharing 

directives, such as for, divide the computation among 

the threads. For example, the ‗for‘ directive specifies 

that the iterations of the associated loop should be 

divided among the threads so that each iteration is 

performed by a single thread. The ‗for‘ directive can 

take a schedule clause that specifies the details of the 

assignment of iterations to threads. Schedules can 

specify assignments such as round-robin or block. 

OpenMP also defines shorthand forms for specifying a 

parallel region containing a single work sharing 

directive. For example, the parallel for directive is 

shorthand for a parallel region that contains a single 

for directive. The data environment directives control 

the sharing of program variables that are defined 

outside the scope of a parallel region. The data 

environment directives include: shared, private, 

firstprivate, reduction and threadprivate. Each 

directive is followed by a list of variables. Variables 

default to shared, which means shared among all the 

threads in a parallel region. A private variable has a 

separate copy per thread. Its value is undefined when 

entering or exiting a parallel region. A firstprivate 

variable has the same attributes as a private variable 

except that the private copies are initialized to the 

variables at the time the parallel region is entered. The 

http://www.ijettjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015 

ISSN: 2231-2803                               http://www.ijcttjournal.org                                Page 83 

reduction directive identifies variables. Finally, 

OpenMP provides the threadprivate directive for 

named common blocks in Fortran and global variables 

in C and C++. Threadprivate variables are private to 

each thread, but they are global in the sense that they 

are defined for all parallel regions in the program, 

unlike private variables which are defined only for a 

particular parallel region. The synchronization 

directives include barrier, critical and flush. A barrier 

directive causes a thread to wait until all of the other 

threads in the parallel region have reached the barrier. 

After the barrier, all threads in the parallel region have 

reached the barrier. A critical directive restricts access 

to the enclosed code to only one thread at a time. 

When thread enters a critical section, it is guaranteed 

to see all modification made by all of the threads that 

entered the critical section earlier. The flush directive 

specifies a point in the program which all threads are 

guaranteed to have a consistent view of the variables 

named in the flush directive, or of the entire memory 

if no variables are specified [20, 21]. 

 

B.  MPI 

In MPI model, each process has its own address 

space and communicates other processes to access 

others address space. Programmers take charge of 

partitioning workload and mapping tasks about which 

tasks are to be computed by each process. MPI 

provides point-to-point, collective, one-sided, and 

parallel I/O communication models [4]. Point-to-point 

communications enable exchanging data between two 

matched processes. Collective communication is a 

broadcast of message from a process to all the others. 

One-sided communications facilitate remote memory 

access without matched process on the remote node. 

Three one-sided libraries are available for remote 

read, remote write, and remote update [1]. MPI 

provides various library functions to coordinate 

message passing in various modes like blocked and 

unblocked message passing. It can send messages of 

gigabytes size between processes. MPI has been 

implemented on various platforms like Linux, OS X, 

Solaris, and Windows. Most MPI implementations use 

some kind of network file storage. As network file 

storage, network file system (NFS) and Hadoop HDFS 

can be used. Because MPI is a high level abstraction 

for parallel programming, programmers can easily 

construct parallel and distributed processing 

applications without deep understanding of the 

underlying mechanism of process creation and 

synchronization. To order to exploit the multicore of 

processors, the MPI processes can be organized to 

have multiple threads in themselves. MPI-based 

programs can be executed on a single computer or a 

cluster of computers [5]. 

 

C.  MapReduce 

MapReduce runtime launches Map and Reduce 

processes with consideration of data locality. 

MapReduce organizes an application into a pair (or a 

sequence of pairs) of Map and Reduce functions. Map 

processes are independent of each other and thus they 

can be executed in parallel without collaboration 

among them. Reduce processes play role of 

aggregating the values with the same key [7].  It 

assumes that input for the functions comes from 

HDFS file(s) and output is saved into HDFS files. 

Data files consist of records, each of which can be 

treated as a key-value pair. Input data is partitioned 

and processed by Map processes, and their processing 

results are shaped into key-value pairs and shuffled 

into Reduce tasks according to key [8, 9]. The 

programmers do not have to consider data 

partitioning, process creation, and synchronization. 

The same Map and Reduce functions are executed 

across machines. Hence, MapReduce paradigm can be 

regarded as a kind of SPMD model [8]. The 

programmers do not have to consider data 

partitioning, process creation, and synchronization. 

The same Map and Reduce functions are executed 

across machines. Hence, MapReduce paradigm can be 

regarded as a kind of SPMD model. MapReduce 

paradigm is a good choice for big data processing 

because MapReduce handles data record by record 

without loading whole data into memory and in 

addition the program is executed in parallel over a 

cluster [8]. It is very convenient to develop big data 

handling programs using MapReduce because Hadoop 

provides everything needed for distributed and parallel 

processing behind the scene which program does not 

need to know. 

 

D. CUDA 

The CUDA model is designed to develop 

applications scaling transparently with the increasing 

number of processor cores provided by the GPUs [23], 

[24]. CUDA provides a software environment that 

allows developers to use C as high-level programming 

language. For CUDA, a parallel system consists of a 

host (i.e.,CPU) and a computation resource or device 

(i.e., GPU). The computation of tasks is done in the 

GPU by a set of threads running in parallel. The GPU 

threads architecture consists in a two-level hierarchy, 

namely the block and the grid, see Fig. 1.  

 
Fig. 1. CUDA  (OpenCL) architecture and memory 

model. 

http://www.ijettjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015 

ISSN: 2231-2803                               http://www.ijcttjournal.org                                Page 84 

The block is a set of tightly coupled threads, each 

identified by a thread ID. On the other hand, the grid 

is a set of loosely coupled blocks with similar size and 

dimension. There is no synchronization at all between 

the blocks, and an entire grid is handled by a single 

GPU. The GPU is organized as a collection of 

multiprocessors, with each multiprocessor responsible 

for handling one or more blocks in a grid. A block is 

never divided across multiple multiprocessors. 

Threads within a block can cooperate by sharing data 

through some shared memory, and by synchronizing 

their execution to coordinate memory accesses. More 

detailed information can be found in [22], [25]. 

Moreover, there is a best practices guide that can be 

useful to programmers [26]. CUDA is well suited for 

implementing the SPMD parallel design pattern [27]. 

Worker management in CUDA is done implicitly. 

That is, programmers do not manage thread creations 

and destructions. They just need to specify the 

dimension of the grid and block required to process a 

certain task. Workload partitioning and worker 

mapping in CUDA is done explicitly. Programmers 

have to define the workload to be run in parallel by 

using the function ―Global Function‖ and specifying 

the dimension and size of the grid and of each block. 

The CUDA memory model is shown in Fig. 1. At the 

bottom of the figure, we see the global and constant 

memories. These are the memories that the host code 

can write to and read from. Constant memory allows 

read-only access by the device. Inside a block, we 

have the shared memory and the registers or local 

memory. The shared memory can be accessed by all 

threads in a block. The registers are independent for 

each thread. 
 

IV. COMPARATIVE ANALYSIS 

 

Here, parallel programming models are 

considered using a pure shared or distributed memory 

approach. As such, we consider the threads, shared 

memory OpenMP, and distributed memory message 

passing models. Table I collects the characteristics of 

the usual implementations of these models [28]. 

 

Table I: Pure Parallel Programming Models and 

Implementations 

Operation OpenMP MPI 

System 

Architecture 

Shared Memory Distributed and 

Shared Memory 

Communication 

Model 

Shared Address Message 

Passing or 

Shared Address 

Programming 

Model 

Shared Memory Message 

Passing 

Synchronization Implicit Implicit or 

Explicit 

Implementation Compiler Library 

Granularity Fine Course or Fine 

Now, for the all-pairs-shortest-path problem, 

three sample graphs were randomly generated of 

which the numbers of nodes were 10, 100, and 1000, 

respectively. When they were generated, each node 

was set to be linked to half of the other nodes. When 

final results are written, there can exist a bottleneck if 

a single file is used as the output. Hence, for the fair 

comparisons, each process or thread is allowed to 

write its output into its own out-file. Table II shows 

the execution time obtained in the all-pairs shortest-

path problem experiments. For this computation 

intensive problem, the OpenMP program gave the best 

performance where 10 threads were used. The MPI 

program was executed on a single machine and on the 

cluster of 5 machines with total of 10 processes. Due 

to the computational overhead, the cluster showed 

poor performance for the MPI program [28]. In the 

experiment setting, the communication bottleneck was 

severe even though the machines were connected with 

a 1Gbps switching hub. The performance of MPI on a 

single machine is not comparable to OpenMP, because 

OpenMP threads share the global address space but 

MPI processes communicate using the message 

passing protocol. If some application can be run on a 

high-end single machine, OpenMP is preferred to 

MPI. MapReduce is not a choice for computational-

intensive and iterative computation problems like the 

all-pairs-shortest-path problem [28]. 

 

Table II: Execution Times for the all-pair-shortest-

path problem 

Structure 

Node 

size 

MapReduce MPI OpenMP 

Cluster Solo 

Machine 

10 140s 0.32s 0.34s 0.1s 

100 1010s 0.44s 0.41s 0.25s 

1000 14440s 284s 24.14s 8.03s 

 

 

Table III: Execution Time for the Join Problem 

Problem structure 

MapReduce MPI OpenMP 

The join 

problem 

1455s 488040s 335640s 

 

Table III shows the experiment results for the 

join problem. The execution time varies depending on 

the execution context like network bandwidth and 

resource management of operating systems, hence the 

same experiments have been conducted three times for 

each setting [28]. The MapReduce based program was 

the best one among the three models. MapReduce is 

the best choice for data-intensive processing of big 

volume of data [28]. Below are the results of tests 

performed in sequential and in the parallel languages 

http://www.ijettjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015 

ISSN: 2231-2803                               http://www.ijcttjournal.org                                Page 85 

for the three applications; Nqueens, Matrix 

multiplication and Mandelbrot [30]. These application 

were implemented sequentially in C and later in Cuda, 

OpenACC and OpenMP in parallelized form [30]. 

 

 
       V.  CONCLUSION 

 
OpenMP, MPI, CUDA and MapReduce are the 

most widely recognized parallel or distributed 

programming frameworks. Each one is said to be the 

de facto standard on its computing model. If a 

problem is small enough to be accommodated and the 

computing resources such as cores and memory are 

sufficient, OpenMP is a good choice. When data size 

is moderate and the problem is computation-intensive, 

MPI can be considered the framework. When data size 

is large and the tasks do not require iterative 

processing, MapReduce can be an excellent 

framework. OpenMP is the easiest to use because 

there is no special attention needed to be paid because 

we just need to place some directives in the sequential 

code. MapReduce is relatively easy to use once we 

can abstract an application into Map and Reduce steps. 

The programmers do not have to consider workload 

partitioning and synchronization. MapReduce 

programs, however, take considerable time for the 

problems requiring much iteration, like all-pairs 

shortest-path problem. MPI allows more flexible 

control structures than MapReduce; hence MPI is a 

good choice when a program is needed to be executed 

in parallel and distributed manner with complicated 

coordination among processes. Generally it was found 

that CUDA was convenient to work with; in fact, 

across all the applications, able to offload work to the 

GPU responsible for 95.8%–99.7% of the 

applications‘ original, single-threaded execution time 

excluding disk I/O. It was also found CUDA far easier 

than traditional rendering-based GPGPU approaches 

using OpenGL or DirectX. CUDA‘s focus on 

available parallelism, the availability of local 

(perblock) shared memory, and the kernel-domain 

abstraction made these applications vastly easier to 

implement than traditional SPMD/thread-based 

approaches. In the case of k-means, CUDA was 

probably a bit more difficult than OpenMP, chiefly 

due to the need to explicitly move data and deal with 

the GPU‘s heterogeneous memory model. In HotSpot, 

with the pyramidal implementation, CUDA‘s ‗‗grid-

of-blocks‘‘ paradigm was a natural fit and probably 

simplified implementation compared to OpenMP. 

                                 
      REFERENCES  

 
[1] OpenMP Architecture Review Board, ―OpenMP Application 

Program Interface,‖ 2008, http://www.openmp.org/mp-

documents/spec30.pdf.  
[2] B. Barney, Introduction to Parallel Computing, Lawrence 

Livermore National Laboratory, 2007, 

https://computing.llnl.gov/tutorials/parallel_comp/.  

[3] J. Diaz, C.Munoz-Caro, and A. Nino, ―A survey of parallel 

programming models and tools in the multi and many-core era,‖ 

IEEE Transactions on Parallel and Distributed Systems, vol. 23, 

no.8, pp.1369–1386, 2012. 

[4] W. Gropp, S. Huss-Lederman, A. Lumsdaine et al., MPI: The 
Complete Reference, the MPI-2 Extensions, vol. 2, The MIT Press, 

1998.  

[5] G. Jost, H. Jin, D. Mey, and F. Hatay, ―Comparing the OpenMP, 
MPI, and hybrid programming paradigm on an SMP cluster,‖ in 

Proceedings of the 5th European workshop on OpenMP 

(EWOMP’03), 2003.  
[6] J.Dean and S.Ghemawat, ―MapReduce: simplified data 

processing on large clusters,‖ Communications of the ACM, vol. 51, 

no. 1, pp. 107–113, 2008. 
[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, ―The Google file 

system,‖ in Proceedings of the 19th ACM Symposium on Operating 

Systems Principles (SOSP ’03), pp. 29–43, October 2003. 
[8] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. 

Kozyrakis,―Evaluating MapReduce for multi-core and 

multiprocessor systems,‖ in Proceedings of the 13th IEEE 
International Symposium on High Performance Computer 

Architecture (HPCA’07), pp. 13–24, Scottsdale, AZ, USA, February 

2007. 

[9] S. J. Plimpton and K. D. Devine,―MapReduce in MPI for 

largescale graph algorithms,‖ Parallel Computing, vol. 37, no. 9, 

pp.610–632, 2011. 
[10]. NVIDIA, ―CUDA C Programming Guide,‖ no. July. NVIDIA 

Corporation, 2013.  
[11]. Wikipedia, ―General-purpose computing on graphics 

processing units,‖ 2013.  

[12]. Y.Charlie Hu, Honghui Lu, Alan L Cox and Willy 
Zwaenepoel, ―OpenMp for Networks of SMPs,‖ Parallel 

Processing , 13th International and 10th Symposium on Parallel and 

Distributed Processing, pp. 302-310, 1999.  
[13]. John Bircsak, Peter Craig, RaeLyn Crowell, Zarka Cvetanovic, 

Jonathan Harris, C. Alexander Nelson and Carl D. Offner, 

―Extending OpenMP For NUMA Machines,‖ SC `00 Proceedings 
of the 2000 ACM/IEEE conference on Supercomputing, Article no. 

48, 2000. 

[14]. Zaid Abdi Alkareem Alyasseri , Kadhim Al-Attar, Mazin 
Nasser and Ismail, ―Parallelize Bubble and Merge Sort Algorithms 

Using Message Passing Interface (MPI),‖ Publication eprint 

arXiv:1411.5283, 2014. 

[15]. Pavan Balaji, Darius Buntinas, David Goodell, William 

Gropp, Torsten Hoefler, Sameer Kumar, Ewing Lusk, Rajeev 

Thakur and Jesper Larsson Traff, ―MPI on Millions of Core,‖ 
Parallel Proceesing Letter, vol. 21, issue 01, 2011. 

[16]. Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary 

Bradski and Christos Kozyrakis, ―Evaluating MapReduce for Multi-
core and Multiprocessor Systems,‖ in Proceedings of the 13th IEEE 

International Symposium on High Performance Computer 

Architecture (HPCA `07), pp. 13-24, Scottsdale, AZ, USA, 
February 2007. 

[17]. Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao and D. Stott 

Parker,―Map-reduce-merge: Simplified Relational Data Processing 
on Large Clusters,‖ in Proceedings ACM SIGMOD international 

Conference on Management of Data, pp. 1029-1040, 2007. 

[18]. Wladimir J. van der Laan, Andrei C. Jalba, and Jos B.T.M. 
Roerdink, ―Accelerating Wavelet Lifting on Graphics Hardware 

Using CUDA,‖ IEEE transactions on Parallel and Distributed, vol. 

22, issue 01, pp. 132-146, 2010. 
[19]. Jedrzej Kowalczuk, Eric T. Psota, Lance C. Pérez, ―Real-time 

Stereo Matching on CUDA using an Iterative Refinement Method 

for Adaptive Support-Weight Correspondences,‖ IEEE transactions 

on Circuits and System for Video Technologies, vol. 23,isuue 01, 

pp. 94-104,2012. 

[20]. The OpenMp Forum. OpenMp Fortran Application Program 
Interface, Version 1.0, http:/www.openmp.org, Oct 1997. 

[21]. The OpenMp Forum. OpenMp C and C++ Application 

Program Interface, Version 1.0, http:/www.openmp.org, Oct 1998. 
[22]. CUDA Zone, 

http://www.nvidia.com/object/cuda_home_new.html, Oct. 2011. 

[23]. Nvidia Developer Zone, http://developer.nvidia.com, Oct. 
2011. 

http://www.ijettjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015 

ISSN: 2231-2803                               http://www.ijcttjournal.org                                Page 86 

[24]. D. Kirk and W. Hwu, Programming Massively Parallel 

Processors: A Hands-on Approach. Morgan Kaufmann, 2010. 

[25]. Nvidia Company. Nvidia CUDA Programming Guide, v3.0, 

2010. 

[26]. Nvidia Company. Nvidia CUDA C Programming Best 
Practices Guide, Version 3.0, 2010. 

[27]. T.G. Mattson, B.A. Sanders, and B. Massingill, Patterns for 

Parallel Programming. Addison-Wesley Professional, 2005. 
[28]. Sol Ji Kang, Sang Yeon Lee, and KeonMyung Lee, 

―Performance Comparison of OpenMP, MPI, and MapReduce in 

Practical Problems, Advances in Multimedia, Research Article, 
2014. 

[29]. Shuai Che_, Michael Boyer, Jiayuan Meng, David Tarjan, 

Jeremy W. Sheaffer, Kevin Skadron, ―A performance study of 
general-purpose applications on graphics processors using CUDA,‖  

Published in J. Parallel Distrib. Comput.,vol. 68,  pp. 1370-1380, 

2008. 
[30]. Cleverson Lopes Ledur, Carlos M. D. Zeve, Julio C. S. dos 

Anjos, ―Comparative Analysis of OpenACC, OpenMP and CUDA 

using Sequential and Parallel Algorithms,‖ 11th Workshop on 
Parallel and Distributed Processing (WSPPD), Universidade 

Luterana do Brasil, Information Systems, BR 116, n. 5.724, 

Moradas da Colina – Guaba/RS. 

http://www.ijettjournal.org/

