
International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 3 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 150

 An Investigation into the Effectiveness of Java Code Coverage

Tools

 Shaik Khasim Saheb, Devavarapu Sreenivasarao, Prof.T.V.Narayana Rao M Kiran Kumar

Department of Computer Science and Engineering

Sreenidhi Institute of Science and Technology, Hyderabad, India

Abstract— Coverage is a measure used in software testing.

It decides the percentage in which the source code of a

program has been tested. Today so many code coverage tools

are available to check how much code is being tested. Some

tools have their own advantages and limitations. In this paper,

we propose to give a survey in such a way that which tool is

giving effective results when compared with other tools in

consideration of all scenarios. We also explain how to catch,

analyze and testing the code of java programs. The major

part of this survey examines the most commonly used

coverage based testing tools. We also survey over-and-above

features which are affiliated with code coverage based testing

tools. Such features accomplish tools more advantageous and

experimental, particularly for large-scale, real-life popular

software applications. This study make-believe each tool has

its individual features attached to its application domains.

Therefore, this study can be used to select the right coverage

testing tools based on various requirements.

Keywords—code coverage, test cases, measurements,

analysis and effectiveness

I. INTRODUCTION

Since the booming aggressive burden surrounded by
numerous software vendors, the desire for high quality
software has expanded. Software quality shows an
extensive aspect in industries whose products build on
software for their application. Subsequently, there is
advancing stress in these organizations to increase
software quality. Software testing is a profession
generally dedicated to take a decision and sometimes to
increase software quality. Of course, estimating the
time and resources that should be allotted to testing
hold a deal among budget, time and quality. Obtaining
an impressive and active software testing tool could be
a life-saver for a project or a company. Moreover there
is no single test tool applicable for all accessible
systems and multinational sectors. Concluding what
basis to implement when picking a clear-cut tool for a
project is absolutely critical. For example, some tools
concatenate seamlessly with your option of IDE (e.g.
Eclipse) and produce easy to understand interfaces to
comfort unit testing in the development phase, but have
scalability problems. Those tools are fit for a small
project, but not for a extensive real-life popular
application that sometimes appended with huge
percentage of legacy code. This survey examines
individual fact that practitioners should recognize when
selecting coverage based testing tool. It encloses the

following issues. First, the theme of testing is very
spacious. One exhaustive, but pathetic representation to
classify testing proposals is the structural/behavioral or
white-box/black-box model. Structural tests, also
known as white-box tests, are based on how a system
operates. They cover a thorough awareness of the
execution of a pattern. Behavioral tests, also known as
black-box tests, are hold on what a system is mandatory
to do. They benefit conventional user synopsis lacking
enquiry into the code. Because of their several views of
the structure, black box and white box test tools are
incomparable. We concentrate this review on tools that
evaluate testing coverage. Coverage-based testing gives
a avenue to compute the status of thoroughness of
white-box testing. Second, there are various suitable
test tools, both popular and open-source software. We
chosen only those with code coverage characteristics.
We justified five tools that meet our category. Facts
about them are available in the public domain.
Innermost or private coverage-based test tools are not in
the scope of this survey. The rest of this survey is
standardized as follows. Section 2 provides an outline
of coverage. Section 3 shows about some Test
Coverage tools. Section 4 discusses some important
aspects of coverage measurement, along with
programming languages, auxiliary features to code
coverage. Section 5 presents various coverage criteria
sustained by each tool. Section 6 concludes the paper in
consideration with the commonly used features which
are specific to the coverage based testing tools.

II. OUTLINE OF COVERAGE

Code coverage specifies to a software engineering
approach whereby you trace quality and completeness
of your collection of test cases by establishing simple
metrics like the percentage of {classes, methods, lines,
etc.} that got executed when the test suite ran. Practice
represents that coverage percentages below, say, 60-
70% belongs to incompletely tested software. You can
imagine unknown bugs in such software. Because of
this, "good" software package firms in still internal
processes whereby a team cannot unharness a chunk of
software package unless it passes unharness gates like
"line coverage should be eightieth or higher"[3][6].

Incidentally, reaching for a 100% coverage is not
profitable either. you only get plenty less quality
improvement for significantly a lot of effort to succeed
in such perfection. Coverage near 85-90% is "good

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 3 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 151

enough" for all sensible functions. The topic of that
coverage metric is "better" may be somewhat spiritual.
There are tutorial studies showing that, for instance,
path coverage at a definite level detects somewhat
additional bugs than, say, line coverage at a similar
level. we predict the particular metric definition isn't
that necessary. We'd rather empower all developers in
our team with a free and quick tool so they'll track their
own coverage (of some kind) early and regularly.
associate degree tough developer can look into the
coverage report that links to the ASCII text file, drill
down a little, look into the "red" areas, and work out
that, if any, areas of the merchandise he left somewhat
under-tested. Code coverage analysis is that the method
of: Finding areas of a program not exercised by a group
of check cases, making extra check cases to extend
coverage, and determinative a quantitative live of code
coverage, that is Associate in Nursing indirect live of
quality. Associate in Nursing optional side of code
coverage analysis is distinguishing redundant check
cases that don't increase coverage. A code coverage
instrument automates this method. you employ
coverage analysis to assure quality of your set of tests,
not the standard of the particular product. you are doing
not typically use a coverage instrument once running
your set of tests through your unharness candidate.
Coverage analysis needs access to check program open
source and infrequently needs recompiling it with a
special command. This paper discusses the small print
you ought to think about once attending to add
coverage analysis to your take a look at arrange.
Coverage analysis has sure strengths and weaknesses.
you want to select from a spread of activity ways. you
ought to establish a minimum share of coverage, to
work out once to prevent analyzing coverage. Coverage
analysis is one in all several testing techniques you
ought to not believe it alone. Code coverage analysis is
usually referred to as take a look at coverage analysis.
the 2 terms ar synonymous . the tutorial world a lot of
usually uses the term "test coverage" whereas
practitioners a lot of usually use "code coverage".
Likewise, a coverage instrument is usually referred to
as a coverage monitor[1][5].

III. TEST COVERAGE TOOLS

This section presents state-of-art coverage based mostly
tools that perform code coverage analysis. There square
measure several take a look at coverage tools that
square measure offered in literature and web,
commercially or work version. Following square
measure some take a look at coverage tools[4].

A. JavaCodeCoverage

JavaCodeCoverage is associate degree open supply
bytecode analyser tool for take a look at coverage
analysis for Java code which needs neither the language
descriptive linguistics nor the open source. A very
important side of JavaCodeCoverage is that it stores the
coverage info for individual legal action thereby

facilitating careful coverage analysis. Another vital side
of JavaCodeCoverage is that it records all very
important code elements and take a look at coverage
info in open supply info code MySQL .

B. JFeature

JFeature is associate degree open supply
feature/requirement coverage tool that facilitates that
specialize in needs as code is developed. It lets leverage
from customary development practices to urge a lot of
insight into the wants lined by the code. it's a plug-in
for the Eclipse IDE and conjointly permits user to
import needs and match them to JUnit take a look at
cases at intervals Java application.

C. JCover

JCover is a code coverage instrument for Java
programs. It provides a mechanism to get applied
mathematics info on the coverage of associate degree
application throughout a check run. It is often wont to
calculate the share of code that was dead, proportion
not dead, what sources weren't employed in files then
on. JCover supports statement and branch coverage.

D. Cobertura

Cobertura is a free open supply Java tool that calculates
the proportion of code accessed by tests. It will be wont
to establish that elements of Java program area unit
lacking check coverage. It will be dead from pismire or
from the command[2].

E. Emma

It is associate open source tool for measurement and
news code coverage for Java. It will instrument
categories for coverage either offline (before they're
loaded) or on the fly (using associate instrumenting
application category loader). Supported coverage
varieties are category, method, line and basic block.

F. Clover

Clover is accessible as either associate Eclipse or plan
plugins or victimization hymenopter script. It supports
statement, method, class, and package coverage. This
tool provides correct, configurable coverage analysis.
Coverage news is in XML, HTML, or via a Swing
graphical user interface. It is a low cost coverage tool.

G. Quilt

Quilt may be a Java software system development tool
that measures coverage, the extent to that unit checking
exercises the software system below test It is optimized
to be used with the JUnit unit take a look at package,
the hymenopteron Java build facility, and also the
maven project management toolkit. Quilt intercepts
code because it is being loaded and alters it. It doesn‘t
work on the ASCII text file level. It manipulates
compiled categories and their bytecode, the code of the
Java Virtual Machine, the JVM.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 3 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 152

H. CodeCover

CodeCover is a free testing tool for Java programmers.
it's totally integrated into Eclipse and performs supply
instrumentation for coverage mensuration particularly
for condition coverage. It helps to extend take a look at
quality.

I. InsECT

InsECT (Instrumentation Execution Coverage Tool), is
a system developed in Java to get coverage info for
Java programs. It instruments Java category files at the
byte code level. The aim of InsECT is to produce
elaborate coverage info concerning Java programs.

J. Jester

Jester is for Java code and JUnits tests. It finds code
within the software package that's not coated by tests.
Jester‘s approach is named mutation testing or
machine-driven error seeding.

K. Hansel

It is associate extension to JUnit. Hansel offers terribly
helpful data that what proportion of the code that a
check is meant to check is covered? It deals with branch
coverage of the category.

L. JBlanket

JBlanket could be a tool for assessing and up technique
coverage of unit action at law. it's meant for each stand
alone and consumer server programs.

M. Coverlipse

Coverlipse is associate Eclipse plug-in for code
coverage visual image. The coverage results square
measure shown when a JUnit check run. It supports
branch, block and all-uses coverage.

N. BullseyeCoverage

It is a C and C++ code coverage instrument tool that
tells what proportion of ASCII text file was tested . It
pinpoints areas that require attention to be reviewed.
Supported coverage varieties square measure operate
and condition/decision. BullseyeCoverage supports the
widest vary of platforms of any code coverage
instrument including Windows and Linux.

O. NCover

NCover is associate open ASCII text file coverage tool
for .NET platform. It provides a awfully powerful and
versatile tool set which might integrate into build
method and facilitate to deliver higher quality code. It
tells regarding what number times every line of code
was dead throughout a selected run of the applying. It
supports technique and sophistication coverage.

P. Testwell

CTC++ Testwell CTC++ could be a powerful
instrumentation-based check coverage and dynamic
analysis tool for C and C++ code. It shows the coverage

all the thanks to the changed condition/decision
coverage (MC/DC) level as needed by comes. The tool
is lightweight however still contains all the essential
―must‖ options of associate business strength testing
tool.

Q. eXVantage

It is a tool suite for code coverage testing, debugging
and performance identification. It supports Java and
C/C++ platforms. eXVantage uses ASCII text file
instrumentation for C/C++ and byte code
instrumentation for Java. It analyzes the program in
such some way that it will choose the smallest amount
variety of probes to be inserted into the object program,
that‘s why it's the best off-line instrumentation
overhead.

R. OCCF

OCCF (Open Code Coverage Framework) supports
multiple programming languages. A sample tool is
created for C, Java and alternative languages
victimization OCCF. The researchers developed a tool
which will live four coverage criteria. They reduced
prices by reusing common code, and obtained
consistent measurements by supporting multiple
languages, versatile measurements through increasing
options, and complete mensuration‘s by inserting
measurement code into the source code.

S. JAZZ

JAZZ may be a structural testing tool. It will branch,
node, and def-use coverage and implements a GUI,
check planners, dynamic instrumentation, and a check
instrument. Jazz is incorporated in Eclipse for the Intel
x86. Instrumentation is dynamically inserted on
demand because the program executes. Instrumentation
is additionally deleted at the time it's now not required.

IV. COVERAGE MEASUREMENT

All tools enclosed during this survey have coverage
mensuration capability. This section compares these
tools for 3 vital coverage tool characteristics: (i)
supported programming languages, (ii) program
instrumentation overhead and (iii) further options
complementary to code coverage.

A. Supported languages

The selection of languages reflects every company‘s
target industries. Corporations that offer tools for
system package, or embedded package vendors tend to
focus additional on supporting C/C++. Table one shows
an entire list of the tools and therefore the languages
that they support. Such tools square measure designed
to introduce minimum performance overhead in order
that the tool is usable in period environments.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 3 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 153

Table I.Coverage Tools and the Languages to Which They Apply

Tool Name C++/C Java Other

Cobertura X

Emma X

Clover X .net

JavaCodeCoverage X

JFeature X

Clover X

JCover X

Quilt X

Code Cover X COBOL

Jester X

Hansel X

BullseyeCoverage X

NCover .net

Testwell CTC++ X

eXVantage X X

OCCF X X X

JAZZ X

In follow, debugging invariably follows testing. a

number of the coverage tools give debugging help, like
JCover, JTest. Their solutions square measure all
completely different. for instance JCover has the power
to try and do coverage differencing and comparison to
reveal the error code.

B. Instrumentation overhead

Evaluation of Code Coverage is that the downside of
characteristic the parts of a program that didn't execute
in one or a lot of runs of a program. Developers and
testers use code coverage to confirm that each one or
well all statements in a very program are dead a
minimum of once throughout the testing method.
measure code coverage is very important for testing and
confirmatory code throughout each development and
porting to new platforms. historically code coverage
measure tools are designed victimization static code
instrumentation. throughout program compilation or
linking, these tools insert instrumentation code into the
binary possible file. The inserted instrumentation

provides counters to record that statements ar dead. The
code inserted into the executable remains in the
executable throughout the execution even though once
a statement has been executed, the instrumentation code
produces no additional coverage information.
Moreover, these tools conservatively instrument all
functions prior to the program execution even though
some of them may never be executed. Leaving useless
instrumentation in place increases the execution time of
the software being tested especially if the program is
long running and has many frequently executed paths
(as most server programs due).

1) Off-line program analysis and instrumentation
Overhead Source code instrumentation, employed by
most of the tools as well as BullseyeCoverage, Intel
Code Coverage Tool, linguistics styles and TestWork,
needs recompilation, however provides a lot of direct
results and is a lot of variable to a large form of
processors and platforms. It can't be used once the
ASCII text file isn't obtainable, as is usually the case for
third party code. C/Cþþ tools like Dynamic Memory
Systems‘ Dynamics, use runtime instrumentation, that
makes them possible in a very production atmosphere.
They will be a lot of economical in terms of
compilation time, however less transportable. The Java
coverage tool Koalog Code Coverage doesn't need
instrumentation, and so no recompilation is required . It
operates with the assembly binaries exploitation the
Java right Interface, that is an element of the Java
Platform computer program design (JPDA). Koalog
Code Coverage is platform freelance, however needs a
JPDA compliant Java Virtual Machine (JVM). Agitar‘s
mischief-maker runs the code in a very changed JVM,
conjointly employing a dynamic instrumentation
approach. eXVantage uses ASCII text file
instrumentation for C/Cþþ and bytecode
instrumentation for Java. As compared to the opposite
sixteen tools, it's the very best off-line instrumentation
overhead as a result of it analyzes the program in such
some way that it will choose the smallest amount
variety of probes to be inserted into the computer
program.

2) Run-time instrumentation overhead
Companies that offer tools for system code or
embedded code tend to focus a lot of on reducing run-
time overhead, so their tools are often usable in period
environments, e.g. CodeTEST. TCAT claims that its
TCAT C/ Cþþ Version three.2 maintains its overhead
for execution size magnitude relation at one.1– 1.8 and
swiftness magnitude relation at one.1–1.5, linguistics
styles claims one.1–1.3, variable in step with language
and compiler, among the simplest in our survey. Clover
claims that their fastness overhead is extremely
variable, betting on the character of the appliance
underneath take a look at, and therefore the nature of
the tests.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 3 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 154

 TABLE 2. Instrumentation
Tool Name Source Code Byte Code

 Instrumentation Instrumentation

JavaCodeCoverage X

JFeature X

JCover X

Cobertura X

Emma X

Clover X

Quilt X

Code Cover X

Jester

GroboCodeCoverage X

Hansel

BullseyeCoverage X

NCover X

Testwell CTC++ X

eXVantage X X

OCCF X

JAZZ X

V. COVERAGE MEASUREMENT CRITERIA

There square measure an outsized type of coverage
activity criteria knowledge coverage, statement (line)
coverage, block coverage, call (branch) coverage, path
coverage, function/method coverage, category coverage
and execution state house coverage. Among them,
statement (basic block) coverage, call coverage,
function/method coverage and sophistication coverage
are enforced by some coverage tool vendors. the
{remainder} remain principally of interest to
researchers, due to their redoubled complexness and
problem of use. Practitioners generally don't use
different criteria like knowledge coverage as a result of
it's more durable to enhance knowledge coverage. For
example, supported our observations, it's terribly
onerous to induce higher than some % knowledge
coverage. software package tool corporations,
particularly little software package vendors, look for
immediate come on their investment, and therefore the
level of sophistication of their users directs their focus
onto usability, over painstakingness, or accuracy. Table
three lists tools with their coverage measuring criteria.
In Table 3, statement coverage means that the
proportion of (executable) statements dead, whereas

block coverage measures coverage of basic blocks,
wherever a basic block may be a sequence of non-
branching statements. The results for statement
coverage and block coverage may take issue, however
they're ordinarily listed within the same class and so
within the same column in Table three for simple
comparison. eXVantage and Intel Compiler Code-
Coverage live block coverage. The number of tools,
e.g. Koalog, give the

TABLE 3.Levels of coverage measurement provided by tools.

Tool Name Statement/ Branch/ Method/ Class

 Line/Block decision function

JavaCodeCoverage X X X

Jfeature X

Jcover X X X X

Cobertura X X

Emma X X X

Clover X X X X

Quilt X X

Code Cover X X

Jester

GroboCodeCoverage X

Hansel X

BullseyeCoverage X X

Ncover X X

Testwell CTC++ X

eXVantage X X X

OCCF X X

JAZZ X

choice of selecting the scope for coverage calculations,
as an example, the statement coverage in an
exceedingly technique, a category or a package. Clover
permits users to customise the scope by providing
refined method- and statement-based filtering of
coverage results this could facilitate to come up with
additional informative reports and can be more
mentioned in Section five. Line coverage and statement
coverage dissent once over one statement might
contribute to one line‘s coverage score or one statement
takes over one line. trefoil uses statement coverage.
However, most of the venders don't distinguish
between statement and line coverage, thus we tend to
list them in Table three.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 3 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 155

There square measure many variations of
condition/decision coverage, however we tend to list all
of them within the third column while not
differentiation. a call is that the whole expression that
affects the flow of management within the CFG and is
treated as one node within the CFG. A condition/branch
could be a sub-expression in an exceedingly call
expression, connected by logical-and and logical-or
operators. BullseyeCoverage and Metrowerk‘s
CodeTEST live changed condition/decision coverage
for C/Cþþ, that provides a decent balance of usability
and painstakingness. Branch coverage provides the
amount of branches dead below take a look at. Clover,
Cobertura and TCAT/Java support branch coverage for
Java. Methodology coverage reports for every
methodology or operate whether or not or not it's
invoked. Category coverage reports {a category|a
category} as lined if a minimum of one line in this class
is dead. Neither methodology nor category coverage
provides fine roughness, however they are doing give
an summary of testing quality.Software Research Inc‘s
TCAT/JAVA uses an algorithm, called ‗All Paths
Generator‘, which is consumed, to calculate simple
path coverage. It is designed for use on critical
applications where test completeness is required. The
applicability of different measures is affected by the
style of the code, such as the size of a method or a
function, and the density of branching. For example,
method coverage, which counts a method as covered if
at least one line in that method is executed, is more
suitable for software that consists of many small
methods rather than a few large methods.

VI. CONCLUSION

This paper evaluates some test coverage tools. We
have compared five features language support,
instrumentation, coverage measurement, GUI and

reporting. In our opinion, these are the best criteria to
test the coverage tools. Table 5 summarizes our
analysis. Each tool has some strong and weak points.
Users and developers can select the tool according to
their need. We hope our work will help in more usage
and selection of tools.

Sup

port

ed

Lan

guag

es

Tool name

Measurements

Stateme
nt/line/bl

ock

Bran

ch/d

ecisi
on

Met

hod/

func
tion

Cla

ss

GU

I

Re
por

ts

Java

Clover X X X X X

Cobertura X X X X

EMMA X X X X X

JCover X X X X X X

Koalog X

JavaCodeCo

verage
X X X X X

JFeature X X X

Clover X X X

Quilt X X

Code Cover
X X X X

Jester X X

GroboCode

Coverrage
 X

Hansel X

C/C+

+

Code TEST X X

BullseyeCo

verage
 X X X X

Testwell

CTC++
 X X

Java

and

C/C+

+

eXVantage X X X X

OCCF
X X X

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 3 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 156

Table 4 provides guidelines for developers to select
coverage testing tools. Overall, much research in the
area of software coverage testing has been realized and
used in industrial software production. We hope our
work will contribute to more usage of tools to improve
software testing and as well as it will helps to the new
researchers, can choose a path to start their research
accordingly.

Table 4:Tool Selection

Requirements Tools

Real-time/low overhead Dynamic, eXVantage

High coverage Agitar, Parasoft Jtest

Multi-language support PurifyPlus, Semantic Designs

Multi-platform (C++ only) BullseyeCoverage, Semantic

 Designs

VII. REFERENCES

[1] R. Lingampally, A. Gupta, P. Jalote. "A Multipurpose Code
Coverage Tool for Java," In Proceedings of the 40th Annual
Hawaii International Conference on System Sciences, IEEE
Computer Society, 261b, 2007.

[2]Zhu, H., Hall, P.A.V. and May, J.H.R. (1997) Software unit test
coverage and adequacy. ACM Comput. Surv., 29, 366–427

[3] Myers, Glenford J., The art of software testing, New York :Wiley,
c1979.

[4] Li, J.J. (2005) Prioritize Code for Testing to Improve Code
Coverage of Complex Software. Proc. 16th IEEE International
Symposium on Software Reliability Engineering, IEEE
Computer Society.

[5] Li, J.J., Weiss, D. and Yee, H. (2006) Code-coverage guided
prioritized test generation. Inf. Softw. Technol., 48, 1187–1198.

[6] Wong, W.E. and Li, J. (2005) An Integrated Solution for Testing
and Analyzing Java Applications in an Industrial Setting, Proc.
12th Asia-Pacific Software Engineering Conference
(APSEC‘05). Vol. 00, 576–583. IEEE Computer

[7] Mr. Shaik Khasim Saheb working asAassistant professor ,CSE
in Sreenidhi Inistitute of Science and Technology. He has
completed M.Tech (CSE) in VIT University and his research
area include Software Testing and Image Processing, Computer
Networks, Information Security and Big Data. He has
published 3 Papers in various International Journals.

[8] Mr. Devavarapu Sreenivasarao working as Assistant
professor,CSE in Sreenidhi Inistitute of Science and
Technology. He has completed M.Tech (CSE) in JNTUH,
Hyderabad and his research interests include Software Testing
,Image Processing, Computer Networks, Information Security,
Big Data and Cloud Computing. He has published 7 Papers in
various International Journals.

[9] Prof. T.V. Narayana Rao working as Professor, CSE in
Sreenidhi Inistitute of Science and Technology, Hyderabad. His
research area includes Software Testing, Network Security and
Image Processing, Big Data and Cloud Computing. He is
member on editorial boards of many national and international
journals and has published 99 Papers in various International
Journals.

[10] Mr. M Kiran Kumar working as Assistant professor in
Sreenidhi Inistitute of Science and Technology. He has
completed M.Tech (CSE) in HCU, Hyderabad and his research
area includes Software Testing and Image Processing,
Computer Networks, Information Security and Big Data . He
has published 3 Papers in various International Journals.

Suppor

ted

Langua

ges

Tool name

Instrumentation

Source code

instrumentation

Byte code

instrumenta

tion

On the fly

(dynamic)

Java

Clover X

Cobertura

 X

EMMA X X

JCover X X

Koalog X

JavaCodeCoverage

 X

JFeature X

Clover X

Quilt X

Code Cover

X

Jester Other

GroboCodeCoverrage

 X

Hansel Other

C/C++

Code TEST X

BullseyeCoverage
X

Testwell CTC++
X

Java

and

C/C++

eXVantage
X X

OCCF
X

http://www.ijcttjournal.org/

