
International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 50

Development of a Barcode Reader System
Firas Abdullah Thweny Al-Saedi, Ali Al-Bayaty

Computer Engineering Department, Al-Nahrain University, Baghdad, Iraq

Abstract — In this paper, a software package was

developed to decode a defined set of barcode standards.

This package captures the barcode image by using a

commercial USB (Universal Serial Bus) Webcam device,

color-scale or grayscale of capturing modes. Several digital

image processing filters were used to find the barcode area

(inside the captured image) and to enhance the founded

barcode area. These filters were based on the known

techniques of the digital image processing, like:

thresholding, differencing, averaging and histogram-

equalization. Finally, the enhanced and founded barcode

area is decoded on the human-readable digits and displayed

to the PC monitor. Because of the various barcode types (or

symbologies), this package is capable of decoding three (1D

(One dimensional) numeric character set, continuous,

multiple-width, fixed-length, self-checking) barcode

symbologies: EAN-13 (European Article Numbering-with 13

digits), UPC-A (Universal Product Code–Class A), and

ISBN (International Standard Book Number). Microsoft

DirectShow 8.0 was used as the software tool for the USB

Webcam device driver interface and Microsoft Visual C++

6.0 GUI (Graphical User Interface) as the software

language for the digital image processing filters and for the

decoding algorithms of the defined three barcode

symbologies. Many tests on package were done, and the

obtained results were satisfactory in terms of accuracy and

speed.

Keywords — Barcode reader, EAN-13, 1D barcode, ISBN

reader, UPC-A, Image processing.

I. INTRODUCTION

The development of this software package

depends mainly on the capturing and

decoding operations that applied on the

barcode image.

The software was implemented and

achieved by using the algorithms of: (a)

Capturing image routines [1][2] (capturing

the barcode image via a USB Webcam) and

(b) Decoding procedures of a defined set of

barcode symbologies (e.g. EAN-13, UPC-A

and ISBN) [3][4]. Digital image processing

techniques were used to enhance the captured

barcode image and to give it a custom

features to facilitate the decoding procedures

[5].

The paper can be categorized into three

parts: Part I consists of the USB Webcam

device driver interface that is used to capture

an image (a barcode image), Part II deals

with the techniques or filters of the digital

image processing that is applied to the

captured image (e.g. grayscale, threshold,

histogram-equalization and so on) and Part

III which consists to the decoding procedures

of the barcode and to display the resultant

decoded barcode number. The functional

block diagram shown in Figure 1, illustrates

the steps of the system implementation with

the corresponding parts.

Fig. 1 The functional block diagram

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 51

II. SYSTEM LAYOUT

The overall system layout is illustrated as

shown in Figure 2, with the aid of the

functional block diagram of Figure 1.

This section and the following sections

describe the whole operations of the software

package; these descriptions will depend upon

the sequences of the functional block

diagram of Figure 1. This functional block

diagram is divided into three parts, each part

accomplishes a specific task.

The output of each part will be handled as

input to the next part, with the exception of

Part I which handles a variable pre-defined

inputs.

The operation of each part is divided into

steps, for the simplicity and easily illustration

of that operation.

An operation or a step is explained with

the aid of the histogram illustrations and

pseudocodes (mixture of English and

programming language, such as C++ or Java

that used to describe a step line-by-line for

high explanation for the actual operations).

Fig. 2 The proposed system layout

A. Initialization

The first and the main operation of the software is

the initialization process. It is used to initialize the

package for the first run, to prepare the pre-defined

inputs to Part I and to manage the restarting routine

for the software (when the end-user wants to restart

the software for another barcode processing). So that,

when the software starts running for the first time, the

initialization procedures are not as the procedures

when the software restarting, as shown in Figure 1.

The initialization process is divided into different

processes, which are:

 Program Initialization: holds the GUI

(Graphical User Interface), image viewers,

histograms viewers and the information that

related for each step of the process.

 DirectX Initialization: contains codes and filters

for Webcam finding, previewing and capturing.

 Variable Declaration: declares variables and

constants in the software.

 Variable Assignment: initializes the previous

variables and reinitializes them if the software

is restarted.

The complete steps in this operation are illustrated

in the following pseudo code:
//Initialization Procedure Pseudocode:

BEGIN

//Program Initialization...

//For each step there are image viewers.

INITIALIZE image-viewers

//For each step there are histograms.

INITIALIZE histograms

//A text info for each step.

INITIALIZE info

//DirectX Initialization...

INITIALIZE directx-object

//Initializing the filters of: finding Webcam

//device, previewing and capturing.

INITIALIZE directx-filters

//Variables Declaration...

//Pixels for digital image processing.

PIXEL pixel, pixel2

//For every step there are image files.

IMAGE img-capture, im-gray, img-i, img-ii,

 img-iii, img-iv, img-v, img-vi

//Declare image's width and height for each

image file.

VARAIBLE img-width, img-height

//Barcode specifications in an image.

VARAIBLE barcode-width, barcode-

height,barcode-size, barcode-number

//Rectangle's dimensions.

VARAIBLE rectYo, rectXo, rectYn, rectXn

//Iterator counters.

VARAIBLE X, Y

//Temporary storages.

VARAIBLE index, swap, scan-line[20]

//Each histogram has a counter of color

//appearance in the image.

VARAIBLE histogram-counter

//Number of pixels per color.

VARAIBLE Nk[16]

//Probability Density Function.

VARAIBLE Pr[16]

//Transformation Function of the Histogram

//Equalization.

VARAIBLE S[16]

//For checking the states either true or

false.

BOOL done

//Creating the Grayscale Look-Up table...

CONSTANT grayscale-table[16]

FOR X=1 TO X=15 STEP1

grayscale-table[X]=16*X , grayscale-

table[16]=255

//Variables Assignment...

//From this position, the program reinitiates

when it restarted.

restart:

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 52

//Assuming all the states are false

done=FALSE

//Zeros all the arrays.

FOR X=1 TO X=16 STEP1

Nk[X]=Pr[X]=S[X]=0

END

B. Capturing barcode via USB webcam

The capturing operation is done by using Microsoft

DirectShow, and the procedures of capturing the

image are:

 Finding the connected USB Webcam(s).

 Displaying the found USB Webcam device name.

 Starting the previewing until the beginning of the

capturing procedure (the capturing process may

be in the Standard Mode or in the Mirror and Flip

Mode).

 Transfer the captured image to Part II.

The following pseudocode illustrates this step:

//Capturing Barcode via USB Webcam

Pseudocode:

BEGIN

//Activate finding Webcam device filter.

done = LOAD find-webcam

//When there is a Webcam device.

IF done = TRUE THEN {

 //Activate the name specification filter.

 LOAD device-name

 //Activate the capturing filter.

 LOAD capture

 //Activate the previewing filter.

 LOAD preview

 //Displaying Webcam device name.

 ATTACH device-name (find-webcam)

 //Start previewing.

 RUN preview (find-webcam)

 //Here, the end-user is ready to press the

 //capture button...

 done = capture-button-click

 IF done = TRUE THEN {

 //Pause previewing.

 PAUSE preview (find-webcam)

 //Start capturing and attaching the

 //captured image to a file.

 img-capture = RUN capture (find-webcam)

 //Transfer the captured image "file" to

 //Part II.

 TRANSFER img-capture

 //Stop previewing.

 STOP preview (find-webcam)

 //Stop capturing.

 STOP capture (find-webcam)

 //Deactivate previewing filter.

 UNLOAD preview

 //Deactivate capturing filter.

 UNLOAD capture

 //Deactivate the name specification

filter.

 UNLOAD device-name

 }

}

//Deactivate finding webcam device filter.

ELSE (UNLOAD find-webcam)

 MESSAGE "There is no Webcam device!!!"

//Deactivate finding Webcam device filter.

UNLOAD find-webcam

END

C. Loading barcode image

The captured image has been transferred and loaded

to Part II, (the image viewer), which will be

processed by the digital image processing filters later.

The following pseudocode illustrates this step:

//Loading Barcode Image Pseudocode:

BEGIN

//Setting info for this operation.

SET info

//Clearing the image viewer.

SHOW image-viewer (EMPTY)

//Resetting the histograms.

SHOW histogram (EMPTY)

//Loading the captured image.

SHOW image-viewer (img-capture)

//Calculating image's width.

SET img-width (img-capture)

//Calculating image's height.

SET img-height (img-capture)

//Colors counter.

SET histogram-counters (img-width, img-

height)

//Calculating the histograms.

SHOW histogram (histogram-counters)

END

D. Grayscaling the barcode image

The first used digital image processing filter is the

grayscale filter, this filter converts the captured color

image of the RGB “24-bit” colors to a grayscale

image of a 16 grayscale “4-bit” color quality as shown

in Equation 1.

COLOR = (Red , Green , Blue)

(1)

The algorithm of the grayscale filter depends on the

lookup table which contains 16 grayscale colors, so

that, the software picks a pixel from a captured color

image, compares it with the table and assigns the

selective grayscale color to the picked pixel, and so

on.

The following pseudocode illustrates this step:

//Grayscaling the Barcode Image Pseudocode:

BEGIN

//Setting info for this operation.

SET info

//Loop for the image's height.

FOR X=1 TO X=img-height STEP 1

{

 //Loop for the image's width.

 FOR Y=1 TO Y=img-width STEP 1

 { //Take pixel from captured image.

 pixel=img-capture.GETPIXEL(Y,X)

 //Find and procedure on the LOOK-UP

table.

 pixel2 = FIND pixel ON grayscale-

table[16]

 REPLACE pixel BY pixel2

 //Put pixel in the gray image.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 53

 img-gray.SETPIXEL(pixel,Y,X)

 }

}

//Loading the gray image.

SHOW image-viewer (img-gray)

//Calculating image's width.

SET img-width (img-capture)

//Calculating image's height.

SET img-height (img-capture)

//Colors counter.

SET histogram-counters (img-width, img-

height)

//Calculating the histogram.

SHOW histogram (histogram-counters)

END

E. Finding barcode area

Three steps are included inside this operation, which

are:

i. Threshold the output image of subsection (D) at 128

grayscale color (many grayscale levels were taken and

by experiment, it is found that the suitable threshold

level is at 128).

The following pseudocode illustrates this step:

//Finding Barcode Area Step i Pseudocode:

BEGIN

//Setting info for this step.

SET info

//Loop for the image's height.

FOR X=1 TO X=img-height STEP 1

{ //Loop for the image's width.

 FOR Y=1 TO Y=img-width STEP 1

 { //Take pixel from gray image.

 pixel=img-gray.GETPIXEL(Y,X)

//Threshold pixel at 128.

 IF pixel >= 128 THEN

 //Converts to white color.

 Pixel = 255

 //Converts to black color.

 ELSE pixel = 0

 //Put pixel in image of step i.

img-i.SETPIXEL(pixel,Y,X)

 }

}

//Loading the image of step i.

SHOW image-viewer (img-i)

//Colors counter.

SET histogram-counters (img-width, img-

height)

//Calculating the histogram.

SHOW histogram (histogram-counters)

END

ii. Difference the output image of Step i from the

grayscale image of subsection (D). In this step every

pixel from previous step's image is subtracted from the

corresponding pixel of the grayscale image and

absoluted the result as in Equation 2.

Pixel (Step ii Image) = | [Pixel(Grayscale Image) –

 Pixel(Step i Image)] |

(2)

The following pseudocode describes this step:

//Finding Barcode Area Step ii Pseudocode:

BEGIN

//Setting info for this step.

SET info

//Loop for the image's height.

FOR X=1 TO X=img-height STEP 1

{

 //Loop for the image's width.

FOR Y=1 TO Y=img-width STEP 1

{

 //Take pixel from gray image.

 pixel=img-gray.GETPIXEL(Y,X)

 //Take pixel from step i image.

 pixel2=img-i.GETPIXEL(Y,X)

 //Applying Eq. 2

 pixel = ABS (pixel - pixel2)

 //Put pixel in image of step ii.

 img-ii.SETPIXEL(pixel,Y,X)

}

}

//Loading the image of step ii.

SHOW image-viewer (img-ii)

//Colors counter.

SET histogram-counters (img-width, img-

height)

//Calculating the histogram.

SHOW histogram (histogram-counters)

END

iii. Average the output image of Step ii with the

grayscale image of subsection (D). In this step every

pixel from previous step's image is averaged with the

corresponding pixel of the grayscale image. This will

create a homogenous area around the barcode (the

Quiet Zone) as show in Equation 3. It will produce a

"barcode area" at 127 grayscale level.

Pixel (Step iii Image) = [Pixel(Grayscale Image) +

 Pixel(Step ii Image)] / 2

(3)

The following pseudocode describes this step:

//Finding Barcode Area Step iii Pseudocode:

BEGIN

//Setting info for this step.

SET info

//Loop for the image's height.

FOR X=1 TO X=img-height STEP 1

{

 //Loop for the image's width.

 FOR Y=1 TO Y=img-width STEP 1

 {

 //Take pixel from gray image.

 pixel=img-gray.GETPIXEL(Y,X)

 //Take pixel from step ii image.

 pixel2=img-ii.GETPIXEL(Y,X)

 //Applying Eq. 3

 pixel = (pixel + pixel2)/2

 //Put pixel in image of step iii.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 54

 img-iii.SETPIXEL(pixel,Y,X)

 }

}

//Loading the image of step iii.

SHOW image-viewer (img-iii)

//Colors counter.

SET histogram-counters (img-width, img-

height)

//Calculating the histogram.

SHOW histogram (histogram-counters)

//Now, searching for the homogenous area at

127 //level...

//Loop for the image's height.

FOR X=1 TO X=img-height STEP 1

{//Loop for the image's width.

FOR Y=1 TO Y=img-width STEP 1

{ //Take pixel from step ii image.

 pixel=img-iii.GETPIXEL(Y,X)

 //Checking the 127 level.

 IF pixel = 127 THEN

 {//Draw the barcode area with the

yellow

 //color.

 Pixel = YELLOW

 //Put pixel in step iii image.

 img-iii.SETPIXEL(pixel,Y,X)

 }

}

}

//Identify from the left-top direction of

img-iii

FOR X=1 TO X=img-height STEP 1

{

 FOR Y=1 TO Y=img-width STEP 1

 {

 //Take pixel from step ii image.

 pixel=img-iii.GETPIXEL(Y,X)

 //Checking the 127 level.

 IF pixel = YELLOW THEN

 {

 //Draw the barcode area with get

first

 //point of a rectangle.

 rectYo=Y , rectXo=X

 //Stop and exit this iteration.

 GOTO second

 }

 }

}

second:

//Identify from the right-botton direction of

//the img-iii.

FOR X= img-height TO X=1 STEP -1

{

 FOR Y= img-width TO Y=1 STEP -1

 {

 //Take pixel from step ii image.

 pixel=img-iii.GETPIXEL(Y,X)

//Checking the 127 level.

 IF pixel = YELLOW THEN

 {

 //Draw the barcode area with get

 //second point of rectangle.

 rectYn=Y , rectXn=X

 //Stop and exit this iteration.

 GOTO finish

 }

 }

}

finish:

//Now, having the two points of the desired

//rectangle...

DRAW RECTANGLE (rectYo, rectXo, rectYn,

rectXn,

 RED)

//Get the barcode area width.

barcode-width = rectYn – rectYo

//Get the barcode area height.

barcode-height = rectXn – rectXo

//Note that the histogram is taken before

changing the barcode area to the yellow

color. So that, the histogram of this step is

not affect and not count the variation of

//this color.

END

F. Barcode area enhancement

Three steps are included inside this operation, which

are:

i. Extract the Barcode Area from the final output

image of subsection (E) (Step iii).

The following pseudocode illustrates this step:

//Barcode Area Enhancement Step i Pseudocode:

BEGIN

//Setting info for this step.

SET info

//Loop for the barcode's height.

FOR X=1 TO X=barcode-height STEP 1

{

 //Loop for the barcode's width.

 FOR Y=1 TO Y=barcode-width STEP 1

 {

 //Take pixel from img-iii.

 pixel=img-iii.GETPIXEL(Y,X)

 //Check for the yellow color.

 IF pixel = YELLOW THEN

 //Converts to 127 color.

 Pixel = 127

 //Put pixel in this step image.

 img-iv.SETPIXEL(pixel,Y,X)

 }

}

//Loading this step's image.

SHOW image-viewer (img-iv)

//Colors counter.

SET histogram-counters (barcode-width,

 barcode-height)

//Calculating the histogram.

SHOW histogram (histogram-counters)

END

ii. Histogram Equalization of the output image of

Step i by spatially enhancement.

 The following pseudocode illustrates this step:

//Barcode Area Enhancement Step ii

Pseudocode:

BEGIN

//Setting info for this step.

SET info

//Loop for the barcode's height.

FOR X=1 TO X=barcode-height STEP 1

{

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 55

 //Loop for the barcode's width.

 FOR Y=1 TO Y=barcode-width STEP 1

 {

 //Take pixel from img-iv.

 pixel=img-iv.GETPIXEL(Y,X)

 //The following two steps are used to

find

 //the index of pixel's color in the

 //grayscale table of 16 colors, then

 //increment the variable "no. of

 //pixels/color" by one...

 index = FIND-INDEX grayscale-table

[pixel]

 INCREMENT Nk [index] BY 1

 }

}

//Calculate the full barcode area size...

barcode-size = barcode-width * barcode-height

//Calculate the Probability Density

Function...

FOR X=1 TO X=16 STEP 1

 Pr[X] = Nk[X] / barcode-size

//Calculate the Transformation Function...

FOR X=1 TO X=16 STEP 1

{

 FOR Y=1 TO Y=X STEP 1

 S[X] = S[X] + Pr[Y]

}

//Normalize the Transformation Function to

//represent colors...

FOR X=1 TO X=16 STEP 1

 S[X] = S[X] * 255

//Now, Histogram Equalization...

//Loop for the barcode's height.

FOR X=1 TO X=barcode-height STEP 1

{

 //Loop for the barcode's width.

 FOR Y=1 TO Y=barcode-width STEP 1

 {

 //Take pixel from img-iv.

 pixel=img-iv.GETPIXEL(Y,X)

 //Find the pixel's color index from the

 //grayscale table and assign the

processing

 //pixel to the normalized color by the

 //found index (i.e. Normalized

 //Transformation Function)...

 index = FIND-INDEX grayscale-table

[pixel]

 pixel = S[index]

 //Put pixel in this step's image.

 img-vi.SETPIXEL(pixel,Y,X)

 }

}

//Loading this step's image.

SHOW image-viewer (img-vi)

//Calculating the histogram.

SHOW histogram (histogram-counters)

END

iii. Threshold the resultant image of Step ii at 112

grayscale color (many grayscale levels are taken and

by experiment, it is found that the suitable threshold

level is at 112.

The following pseudocode illustrates this step:

// Barcode Area Enhancement Step iii

Pseudocode:

BEGIN

//Setting info for this step.

SET info

//Loop for the barcode's height.

FOR X=1 TO X=barcode-height STEP 1

{

 //Loop for the barcode's width.

 FOR Y=1 TO Y=barcode-width STEP 1

 {

 //Take pixel from gray image.

 pixel=img-v.GETPIXEL(Y,X)

 //Threshold pixel at 112.

 IF pixel >= 112 THEN

 //Converts to white color.

 pixel = 255

 //Converts to black color.

 ELSE pixel = 0

 //Put pixel in this step image.

 img-vi.SETPIXEL(pixel,Y,X)

 }

}

//Loading this step's image.

SHOW image-viewer (img-vi)

//Calculating the histogram.

SHOW histogram (histogram-counters)

END

G. Decoding barcode area

After processing the captured image (barcode inside

the image) throughout all the previous filters, now it is

ready to be decoded. The decoding routine is

implemented depending on the type of the barcode

(symbology), the scanning directions are from left-to-

right or vice versa "Omni-direction. After that the

barcode number is transferred to the next operation

The following pseudocode illustrates this step:

// Decoding Barcode Area Pseudocode:

BEGIN

//Setting the barcode symbologies, direction

//scan, and how many the scanning line...

//The default barcode symbology.

SET BARCODE-TYPE = EAN-13

//The default scanning direction.

SET SCAN-DIRECTION = Left-to-Right

//From 1 to 20, 9 is the optimum number

(tested //experimentally).

SET SCANLINE-NUMBER = 9

//Start scanning within img-vi...

FOR X=1 TO X=SCANLINE-NUMBER STEP 1

 scan-line[X] = SCAN (SCAN-DIRECTION, img-

vi)

//Averaging the number of the scanning...

FOR X=1 TO X=9 STEP1

 swap = swap + scan-line[X]

swap = swap / 9

//Now, decoding the averaged result, for more

//information about the barcode decoding

//algorithms see Appendix A...

barcode-number = DECODE-BARCODE(BARCODE-TYPE,

swap)

//Transfer the barcode number to the next

//section...

TRANSFER barcode-number

END

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 56

The display area
Preview and the adjustment

of the camera

Stop the preview

Capture the
barcode image

The camera name

Section II.C Section II.D Section II.E Section II.F Section II.G

Section II.H

Section II.I
Histogram

H. Display the resulted barcode number

The barcode number is displayed on the PC screen.

The following pseudocode illustrates this step:

// Display the Resulted Barcode No.

Pseudocode:

BEGIN

//Setting info for this operation.

SET info

//Displaying the barcode number on the img-

vi.

DISPLAY barcode-number ON img-vi

END

I. For new requested barcode processing

There is a decision operation (Node = New Barcode?)

which take place after the whole operations and before

the termination of the software. It is a custom

selection for the end-user to decide either to restart the

program from the beginning or close it.

The following pseudocode illustrates this step:

//Restart or Exit the software Pseudocode:

BEGIN

//Here, the end-user is ready to choose:

done = new-barcode-button-click

IF done = TRUE THEN

 //either restart the software.

 GOTO restart

UNINITIALIZE directx-objects

UNINITIALIZE directx-filters

//or exit it.

EXIT

END

III. RESULTS

In this section, the software GUI is illustrated with

the aid of four examples of different barcode

symbologies (EAN-13, ISBN and UPC-A). The

previous subsections of "II–System Layout " are

illustrated completely using pseudocodes, while the

four examples in this section are presenting only the

captured image (barcode image) and the decoded one

(displaying the decoding barcode number) results. The

other steps of operations of the whole software are

shown in the main GUI window as sequences.

A. EAN-13 barcode example

Captured barcode image via USB Webcam is shown

in Figure 3.

Fig. 3 Captured barcode via Webcam

Decoding barcode area and displaying the resulted

barcode number are shown in Figure 4.

Fig. 4 Decoding barcode area and displaying the

resulted barcode number

B. UPC-A barcode example

Webcam captured barcode shown in Figure 5.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 57

Fig. 5 Capturing barcode via USB webcam

Decoding barcode area and displaying the resulted

barcode number are shown in Figure 6.

Fig. 6 Decoding barcode area and the resulted barcode

number

C. 180
o
 ISBN barcode example

Example of captured inverted barcode is shown in

Figure 7.

Fig. 7 Captured inverted barcode via

webcam

Decoding barcode area and displaying the resulted

barcode number is shown in Figure 8

Fig. 8 Decoding barcode area and resulted

barcode number

D. Rotated ISBN with 5

o
 barcode example

Capturing barcode via USB Webcam, as shown in

Figure 9.

Fig. 9 capturing barcode via USB Webcam

Decoding barcode area and displaying the resulted

barcode number, as shown in Figure 10.

Fig. 10 Decoding barcode area displaying the resulted

barcode number

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 58

IV. DISCUSSION

A. Software GUI

When software starts running, the first panel

appearing to the end-user is the "Video Viewer"

window, as shown in Figure 3. The resultant of this

viewer is the captured image, which it is a barcode

image. And depending on the way of the capturing

(like the justifying and calibration), this image will be

the reference to the proceeding sections and will effect

on the barcode decoding section.

The second panel of the software GUI is started

with loading the captured image (barcode image) as

shown in Figure. 4. The loaded image is displayed

twice: the first one is the resized version of the loaded

image which will not be changed during the next

operations and the other one is processed according to

the calculations and the appliance of digital image

processing filters.

The histograms of the Red, Green and Blue

channels are found and displayed in separated three

histogram viewers.

Actually, there are no real digital image operations

in this stage except that of the resizing and finding the

histograms, but this stage actually prepares the

captured image to the next digital image processing

filters by finding its width and height.

The grayscale conversion is applied to the loaded

image of the previous section (of the RGB Format

"24-bit Color Quality"), to get an output image (of the

Grayscale Format "4-bit Color Quality.

The purpose of this section is to grayscale the

barcode image. So that, the easy manipulations for the

grayscaled image (16 shades of gray color) than the

colored one (different varicolored) for the next

sections.

The grayscaled barcode image is ready for

decoding, before that, it is efficient to find the location

of the barcode area. According to customized digital

image processing filters, the barcode area is filled with

yellow color and surrounded with a colored rectangle,

as shown in Figure 4.

The enhancement filters are applied to the founded

barcode area by using the conventional digital image

processing techniques. Now, the barcode image is

ready for the decoding section.

The final barcode image is decoded and the

resultant barcode number is displayed and printed on

the barcode, as shown in Figure 4.

B. Software execution time

The average execution time of the software GUI (the

average time is calculated for the four presented

examples) are represented in Table 1.

V. CONCLUSIONS

1. The software capable of decoding the three

barcode symbologies (EAN-13, ISBN and UPC-

A) to a human-readable number or digits which

represents different meaning according to that

symbology and display the result on the PC

monitor.

2. The capturing device driver interface works

properly with the TwinkleCam USB Webcam.

Thus, the software can extract the barcode area

from the captured image successfully than other

USB capturing devices.

3. The software has two methods of loading the

barcode image: either from the capturing device

directly or from the media storage device.

4. The purpose of grayscaling the barcode image is

to unify the variations of color levels to defined

set of grayscale levels. This grayscaling is

depending on the look-up table of 16 shades of

the gray.

5. The enhancement of the barcode image was based

on the histogram-equalization method. The other

methods or filters of the digital image

enhancements were used like: low-pass, median

and high-pass filters, but the convenient one is the

histogram-equalization filter. Because it can keep

some features that is necessary in the barcode

image decoding.

6. The software may take long time to accomplish

the whole operations from the loading the barcode

image till decoding it. Because the software reads

and collect its information of the processing

images from the device context (i.e. monitor) and

not from the image files.

Table 1

The average execution time for each section

Process (Section) Step(s)
Execution Time

(second)

Loading Barcode Image 1 1.789588

Gray scaling the

Barcode Image
1 1.201759

Finding Barcode Area 3 3.105104

Step i 0.647608

Step ii 1.228748

Step iii 1.716367

Barcode Area

Enhancement
3 2.623505

Step i 0.484292

Step ii 1.253921

Step iii 0.885292

Decoding Barcode Area

& Displaying the

Resulted Barcode

Number

1 1.510932

Total Execution Time (second) 10.230888

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 1 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 59

REFERENCES

[1] Jeff Sloan, “Batch Capturing of Still Frames Images from

Video”, http://uas.usgs.gov/pdf/imageProcessing/ Raven_

Image _ Mosaic_Procedures.pdf

[2] Tanya H. Peters, M.Sc. Thesis “Effects Of Segmentation
Routine And Acquisition Environment On Iris Recognition”,

University of Notre Dame, 2013.

[3] https://www.packagingcosmetics.com/wp-content/uploads
/2014/07/ Barcode-Standards.pdf

[4] https://docs.isy.liu.se/twiki/pub/VanHeden/DataSheets/

ean13.pdf
[5] R.C. Gonzalez, “Digital Image Processing”, 3d Edition.

http://www.ijcttjournal.org/
https://docs.isy.liu.se/twiki/pub/VanHeden/DataSheets/

