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Abstract — The procedure of Least Square-Errors 

curve fitting is extensively used in many computer 

applications for fitting a polynomial curve of a given 

degree to approximate a set of data. Although 

various methodologies exist to carry out curve fitting 

on data, most of them have shortcomings with 

respect to efficiency especially where huge datasets 

are involved. This paper proposes and analyzes a 

matricized approach to the Least Square-Errors 

curve fitting with the primary objective of 

parallelizing the whole algorithm so that high 

performance efficiency can be achieved when 

algorithmic execution takes place on colossal 

datasets. 
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I. INTRODUCTION 

The technique of Least Square-Errors (LSE) curve 

fitting on data is a standard tool in statistical 

regression analysis. Figure 1 shows an example of 

LSE data-fitting with a quadratic function 
[7]

. 

 

 
Fig. 1. Fitting data points with a quadratic LSE function 

 

LSE curve fitting on data has been largely deployed 

in many scientific computer applications – be it 

determining Light Transfer Characteristics of an 

optical imaging system in a satellite or for Weather 

Forecasting. When such applications involve large 

datasets, commercially available software algorithms 

typically slow down the curve fitting process, mostly 

because inherent parallelism in the input datasets is 

not fully exploited. This paper suggests and explores 

a matricized algorithmic approach for parallelizing 

the LSE curve fitting procedure, in order to achieve 

high performance efficiency, especially so that the 

suggested algorithm can be deployed on many-core 

parallel processors like General Purpose Graphic 

Processing Units (GPGPUs)
[4]

. The algorithmic 

approach described in this paper has been specially 

formulated for lower-order polynomial curve fitting. 

II. MATRICIZING LEAST SQUARE-ERRORS CURVE 

FITTING 

In order to parallelize and hence improve efficiency 

of the LSE curve fitting, it is customary that the 

input data as well as the LSE coefficients be 

represented in the form of matrices and vectors. This 

is explained further below: 

If the input data-set is represented by pairs of the 

type (xi , yi) where 1 ≤ i ≤ n, n ≥ 2, and n is the 

number of data-points, then the best fitting curve f(x) 

has the least square error, i.e
.[1][5]

: 

П = ∑[yi-f(xi)]
2
 = minimum, where i = 1 to n 

For, example if we want to determine a best-fit, LSE 

straight line on the given set of data, then f(x) will be 

given by:  

f(x) = a + bx, where a and b are coefficients to be 

determined. 

Similarly, if we want to determine a second degree 

best-fit LSE curve, then f(x) will be given by: 

f(x) = a + bx + cx
2
, where a, b and c are coefficients 

to be determined. Similarly, for a m
th

 degree 

polynomial fit: 

f(x) = a0 + a1x + a2x
2
 +...+ amx

m
, where a0, a1, 

a2,...,am are coefficients to be determined. 

To obtain the least square error, the unknown 

coefficients must yield zero first derivatives, which 

lead to the following equations: 
∂П / ∂aj = 2∑ [yi - (a0 + a1xi + a2xi 

2
 +...+ amxi 

m
)] = 0,  

where i = 1 to n, j = 0 to m. 

Expanding the above set of equations, we get: 

∑ xi 
j
yi = a0∑ xi 

j
 + a1∑xi 

j+1
 +...+ am∑xi 

j+m
, 

where i = 1 to n, j = 0 to m. 

The unknown coefficients a0, a1,...,am can hence be 

obtained by solving the above set of linear 

equations. 
The set of equations described above indicate that in 

order to determine the unknown coefficients a0, 

a1,...,am, we have to solve a system of linear 
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equations of the form AX = B, where the matrices 

A, X and B are given as shown: 
 
Matrix X = [ a0  a1   a2 ... am  ] 

Matrix B = [ ∑ yi    ∑ xi
 
yi    ∑ xi 

2 
yi   ... ∑ xi 

m 
yi ] 

Matrix A = 
1 ∑ xi  ∑ xi 

2  ... ∑ xi 
m 

∑ xi ∑ xi 
2 ∑ xi 

3  ... ∑ xi 
m+1 

...    

∑ xi 
m ∑ xi 

m+2 ∑ xi 
m+3 ... ∑ xi 

2m
 

 
The matrix X can now be solved by evaluating the 

inverse of matrix A, i.e. X =A
-1

B. In this paper’s 

algorithmic implementation for testing accuracy of 

results, the matrix X has been solved for using the 

method of Gaussian Elimination. 

III.  ACCURACY ANALYSIS OF RESULTS 

After the matricization for LSE curve fitting has 

been done, its now time to test the accuracy of 

results produced by the proposed approach. As a 

standard for comparison, MATLAB’s polyfit() 

function has been also used on the same input data 

for fitting linear, quadratic and cubic curves and the 

determined coefficients have then been compared. 

MATLAB's polyfit() function uses an indirect 

method of determining the least-squares coefficients. 

This method is based on constructing the 

Vandermonde matrix V and then performing QR 

factorisation of V, where Q is an orthogonal matrix 

and R is an upper triangular matrix as shown. The 

QR factorisation is usually carried out using Holder 

Reflections 
[2]

. Therefore we have: 

V p = Y 

If V = QR, where Q is an orthogonal matrix, then: 

 Q.Q
T
 = I, where T is transpose operator and I is the 

identity matrix. Substituting these values, we have: 

(QR) p = Y or (Q Q
T
 )R p = Q

T
Y 

i.e. p = R
-1

(Q
T
Y) or p = (Q

T
Y) \ R, where \ is the 

special matrix division operator used by MATLAB. 

Hence, the polyfit() function returns the unknown 

coefficients in the array p. 
Matrix p = [ a0  a1   a2 ... am  ] 

Matrix Y = [y1   y2   y3 ...  yn ] 

For testing purposes, several comparisons were 

made for different polynomial orders and the 

coefficients were calculated for each order along 

with the corresponding least-squares errors for the 

fitted data. The calculated coefficients, along with 

polyfit()’s coefficients are shown in the following 

tables. Table 1 shows a sample dataset, Tables 2, 3 

and 4 show the calculated coefficients for this 

dataset for polynomial orders 1, 2 and 3 respectively 

and Table 5 shows the fitted data with calculated 

coefficients and the corresponding least squared 

errors. 

 

TABLE I 

SAMPLE DATASET  

x y 

39.206 751.912 

29.74 567.121 

21.31 403.746 

12.087 221.738 

1.812 18.8418 

0.001 1.88672 

 

TABLE II 

ORDER 1 COEFFICIENTS FOR BEST-FIT LSE CURVE 

Generated Values polyfit() Values 

a0=-8.356  a0=-8.356 

a1=19.3496  a1=19.3496 

R = 0.9997  

 

TABLE III 

ORDER 2 COEFFICIENTS FOR BEST-FIT LSE CURVE 

Generated Values polyfit() Values 

a0= -6.5106 a0= -6.5109 

a1= 18.8735 a1= 18.8735 

a2 = 0.0127 a2 = 0.0127 

R = 0.9998  

 

TABLE IV 

ORDER 3 COEFFICIENTS FOR BEST-FIT LSE CURVE 

Generated Values polyfit() Values 

a0= -4.7553  a0= -4.7551 

a1= 17.5105  a1= 17.5109 

a2 = 0.1086  a2 = 0.1086 

a3 = -0.0016  a3 = -0.0016 

R = 0.9996  

 

TABLE V 

FITTED DATA WITH ORDER 3 COEFFICIENTS  

y yf =f(x) yp=fp(x) ef=y-yf ep=y-yp 

751.912 751.18396 752.285156 0.728027 -0.37317 

567.121 569.500305  569.985718 -2.37933 -2.86475 

403.746 402.053284  402.235626 1.69272 1.510376 

221.738 219.903793  219.939758 1.83421 1.798248 

18.8418 27.321678  27.321703 -8.47988 -8.4799 

1.88672 -4.736779  -4.737589 6.6235 6.624309 

 

  ∑ ef 
2 

 
= 

128.1999 

∑ ep 
2
 

= 

129.6512 

 

R represents the Correlation Coefficient in Tables 2, 

3 and 4. In Table 5, the function f(x) represents the 

best-fit polynomial with generated coefficients. The 

function fp(x) represents the best-fit polynomial with 

MATLAB's polyfit() coefficients. From Table 5, the 

sum of Least Square errors were calculated, i.e.: 

∑ ef 
2 

 = 128.199937,  ∑ ep 
2
  = 129.651164. 
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According to the definition, the best-fit curve is the 

one which yields minimum least squared errors. It 

can be seen that the generated coefficients yield a 

lower least-squares error than the polyfit() 

coefficients and hence a best-fit curve is produced as 

compared to polyfit(). This procedure was repeated 

for several other data-sets, and consistent results 

were obtained. 

IV.  PERFORMANCE SPEED-UP ANALYSIS 

As mentioned in the previous sections of this paper, 

the primary objective of Matricizing the LSE curve 

fitting procedure is to achieve higher efficiency and 

speed-up during execution, by exploiting parallelism. 

Many-core processors like General Purpose Graphic 

Processing Units (GPGPUs) and programming 

languages like CUDA are specially designed to 

parallely operate on datasets represented in the form 

of vectors and matrices 
[3][6]

. Datasets involved in 

LSE curve fitting are hitherto in the form of vectors 

involving two or more variables and after 

matricizing the LSE equations, the process of curve 

fitting becomes ideal for implementation on parallel 

processors. For testing purposes, one such 

implementation has been done in the scope of this 

paper where the programming language has been 

chosen to be CUDA and the parallel platform has 

been chosen as NVIDIA Quadro 4000 with compute 

capability 2.0 and 256 cores. It has been found that 

even with a dataset having thousands of data-points, 

speed-ups of the order of ~100 can be achieved 

compared to the sequential execution of the same on 

any normal multi-core processor. 

V.  CONCLUSIONS & FUTURE SCOPE OF WORK 

The procedure of curve fitting based on Least Square 

Errors has many scientific computer applications and 

involves fitting a polynomial function that best 

approximates a given set of data-points. Such a best-

fit polynomial is then described in terms of 

polynomial coefficients. This paper proposes and 

elucidates how to matricize the entire procedure to 

exploit parallelism and obtain higher execution 

speed, especially where colossal datasets are 

involved. In order to qualitatively assess the 

precision of the results obtained, a comparative 

analysis with MATLAB's polyfit() function has been 

done, and minimum least square errors and hence a 

best-fit curve has been obtained. 

As further extension to the research work carried out 

in this paper, methods other than Gaussian 

elimination can be carried out for calculating the 

inverse matrices and determinants. Also the analysis 

can be further extended for higher order polynomials 

as well. 
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