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1. Introduction  

The following result known as the Cauchy’s Theorem [2] (see also [6,page 123]),is well-known on the location of 

zeros of a polynomial: 

Theorem A. All the zeros of the polynomial 
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In the literature [5,6,8] , various bounds for all or some of the zeros of a polynomial 

                                  
n

n zazaazP  ......)( 10  

are available. In either case the bounds are expressed as the functions of all the coefficients naaa ,.....,, 10  of P(z). 

An important class of polynomials is that of the lacunary type i.e. of the type 
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knnnpk aaaaannnnp , the coefficients pja j 0, , are fixed, 

kja
jn ,......,2,1,   are arbitrary and the remaining coefficients are zero. Landau[3,4] initiated the study of such 

polynomials in 1906-7 in connection with his study of the Picard’s theorem and proved that every trinomial 
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Q.G.Mohammad [7] in 1967 proved the following theorem: 
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Theorem B. All the zeros of the polynomial 
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A. Aziz [1] in 2013 proved the following result: 

Theorem C. For every positive number t, all the zeros of the polynomial 
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2. Main Results 

In this paper we consider the case  when the polynomial in Theorem C is a lacunary polynomial and prove 

Theorem 1.  All the zeros  of the polynomial 
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    For 1 n  in Theorem 1, we get the following result which reduces to Theorem C with t=1 : 

Corollary 1. All the zeros  of the polynomial 
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3. Proof of Theorem 1 

Consider the polynomial  
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by applying Holder’s inequality. 
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From the above development it follows that F(z) does not vanish for 

                                           ),max(
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pp LLz  . 

Consequently all the zeros of F(z) and hence P(z) lie in 
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pp LLz  . 

That completes the proof of Theorem 1. 
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