Bounds for the Zeros of a Lacunary Polynomial

M.H. Gulzar¹, Ajaz Wani²

Department of Mathematics, University of Kashmir, Srinagar

Abstract: In this paper we give a bound for the zeros of a lacunary polynomial. The result so obtained generalizes many known results on the Cauchy type bounds for the zeros of a polynomial.

Mathematics Subject Classification: 30C10, 30C15.

Key Words and Phrases: Coefficients, Polynomial, Zeros.

1. Introduction

The following result known as the Cauchy's Theorem [2] (see also [6,page 123]),is well-known on the location of zeros of a polynomial:

Theorem A. All the zeros of the polynomial $P(z) = \sum_{j=0}^{n}$ *j* $P(z) = \sum a_j z^j$ 0 $(z) = \sum a_i z^i$ of degree n lie in the circle $|z| < 1 + M$, where

$$
M = \max_{0 \le j \le n-1} \left| \frac{a_j}{a_n} \right|.
$$

In the literature [5,6,8] , various bounds for all or some of the zeros of a polynomial

$$
P(z) = a_0 + a_1 z + \dots + a_n z^n
$$

are available. In either case the bounds are expressed as the functions of all the coefficients a_0, a_1, \ldots, a_n of P(z).

An important class of polynomials is that of the lacunary type i.e. of the type

$$
P(z) = a_0 + a_1 z + \dots + a_p z^p + a_{n_1} z^{n_1} + a_{n_2} z^{n_2} + \dots + a_{n_k} z^{n_k},
$$

where $0 < p = n_0 < n_1 < n_2 < \dots < n_k$; $a_0 a_p a_{n_1} a_{n_2} \dots a_{n_k} \neq 0$, the coefficients a_j , $0 \leq j \leq p$, are fixed, a_{n_j} , $j = 1,2,......,k$ are arbitrary and the remaining coefficients are zero. Landau[3,4] initiated the study of such polynomials in 1906-7 in connection with his study of the Picard's theorem and proved that every trinomial

$$
a_0 + a_1 z + a_n z^n, a_1 a_n \neq 0, n \ge 2
$$

has at least one zero in 1 $2\frac{\mu_0}{\sigma}$ *a* $|z| \leq 2 \left| \frac{a_0}{a_0} \right|$ and every quadrinomial

$$
a_0 + a_1 z + a_m z^m + a_n z^n, a_1 a_m a_n \neq 0, 2 \leq m < n
$$

has at least one zero in 1 0 3 17 *a* $|z| \leq \frac{17}{2} \left| \frac{a_0}{a_0} \right|$.

Q.G.Mohammad [7] in 1967 proved the following theorem:

Theorem B. All the zeros of the polynomial $P(z) = \sum_{j=0}^{n}$ *j* $P(z) = \sum a_j z^j$ 0 $(z) = \sum a_i z^i$ of degree n lie in the circle 1

$$
|z| \le \max(L_p, L_p^{\frac{1}{n}})
$$

where

$$
L_p = n^{\frac{1}{q}} \left\{ \sum_{j=0}^n \left| \frac{a_j}{a_n} \right|^p \right\}^{\frac{1}{p}},
$$

p>1,q>1with $\frac{1}{-} + \frac{1}{-} = 1$. *p q*

A. Aziz [1] in 2013 proved the following result:

Theorem C. For every positive number t, all the zeros of the polynomial $P(z) = \sum_{j=0}^{n}$ *j* $P(z) = \sum a_j z^j$ 0 $(z) = \sum a_i z^i$ of degree n lie in the circle

$$
|z| \le (n+1)^{\frac{1}{q}} \left\{ \sum_{j=0}^{n} \left| \frac{ta_j - a_{j-1}}{a_n t^{n-j}} \right|^p \right\}^{\frac{1}{p}},
$$

where $p > 1, q > 1$ with $\frac{1}{q} + \frac{1}{q} = 1$. *p q*

2. Main Results

In this paper we consider the case when the polynomial in Theorem C is a lacunary polynomial and prove

p

1

Theorem 1. All the zeros of the polynomial

$$
P(z) = a_0 + a_1 z + \dots + a_\lambda z^\lambda + a_{n_1} z^n, a_\lambda \neq 0, 0 \le \lambda \le n - 1
$$

of degree n lie in the circle

$$
|z| \le \max(L_p, L_p^{\frac{1}{n}})
$$

where

$$
L_p = (\lambda + 2)^{\frac{1}{q}} \left\{ \sum_{j=0}^{\frac{\lambda+1}{q}} \left| \frac{a_j - a_{j-1}}{a_n} \right|^p \right\}^{\frac{1}{p}}, a_{\lambda+1} = 0 = a_{-1},
$$

with $\frac{1}{1} + \frac{1}{1} = 1$.

 $p>1, q>1w$ 1. $+ - =$ *p q*

For $\lambda = n - 1$ in Theorem 1, we get the following result which reduces to Theorem C with t=1 :

Corollary 1. All the zeros of the polynomial

$$
P(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_{n} z^n
$$

of degree n lie in the circle

$$
|z| \le \max(L_p, L_p^{\frac{1}{n}})
$$

where

$$
L_p = (n+1)^{\frac{1}{q}} \left\{ \sum_{j=0}^n \left| \frac{a_j - a_{j-1}}{a_n} \right|^p \right\}^{\frac{1}{p}}, a_{-1} = 0,
$$

p>1,q>1with $\frac{1}{-} + \frac{1}{-} = 1$. *p q*

3. Proof of Theorem 1

Consider the polynomial

$$
F(z) = (1 - z)P(z)
$$

$$
= (1-z)(a_n z^n + a_{\lambda} z^{\lambda} + a_{\lambda-1} z^{\lambda-1} + \dots + a_1 z + a_0)
$$

= $-a_n z^{n+1} - a_{\lambda} z^{\lambda+1} + (a_{\lambda} - a_{\lambda-1}) z^{\lambda} + (a_{\lambda-1} - a_{\lambda-2}) z^{\lambda-1} + \dots + (a_1 - a_0) z + a_0$
= $-a_n z^{n+1} + \sum_{j=0}^{\lambda+1} (a_j - a_{j-1}) z^j$

Therefore

$$
|F(z)| \ge |a_n||z|^{n+1} - \sum_{j=0}^{\lambda+1} |a_j - a_{j-1}||z|^j
$$

$$
= |a_n||z|^{n+1} [1 - \sum_{j=0}^{\lambda+1} \left| \frac{a_j - a_{j-1}}{a_n} \right| \cdot \frac{1}{|z|^{n-j+1}}]
$$

$$
\ge |a_n||z|^{n+1} [1 - {\left(\sum_{j=0}^{\lambda+1} \left| \frac{a_j - a_{j-1}}{a_n} \right|^p \right)}^{\frac{1}{p}} {\left(\sum_{j=0}^{\lambda+1} \frac{1}{|z|^{(n-j+1)q}} \right)}^{\frac{1}{q}}}]
$$

by applying Holder's inequality.

Now, if $L_p \ge 1$ then $\max(L_p, L_p^{\frac{1}{n}}) = L_p$ Therefore, for $|z| \ge 1$ so that $|z|^{(n-j+1)q} \ge |z|^q$ i.e. $\frac{1}{|z|^{(n-j+1)q}} \le \frac{1}{|z|^q}$ $1 \quad 1$ $\frac{1}{(n-j+1)q} \leq \frac{1}{1+q}.$ Hence ,for $\left|z\right|$ $>$ $L_{_{p}}$,

$$
|F(z)| \ge |a_n||z|^{n+1} [1 - {\left(\sum_{j=0}^{\lambda+1} \left| \frac{a_j - a_{j-1}}{a_n} \right|^p\right)}^{\frac{1}{p}} (\sum_{j=0}^{\lambda+1} \frac{1}{|z|^q})^{\frac{1}{q}}\big]
$$

$$
= |a_n||z|^{n+1}[1 - \frac{(\lambda + 2)^{\frac{1}{q}}}{|z|}(\sum_{j=0}^{\lambda+1} \left| \frac{a_j - a_{j-1}}{a_n} \right|^p)^{\frac{1}{p}}]
$$

= $|a_n||z|^{n+1}[1 - \frac{L_p}{|z|}]$
> 0.

Again, if, if $L_p \leq 1$ then $\max(L_p, L_p^{\frac{1}{n}}) = L_p^{\frac{1}{n}}$. Therefore, for $|z| \leq 1$ so that $|z|^{(n-j+1)q} \geq |z|^{nq}$ i.e. $\left| z \right|^{(n-j+1)q} = \left| z \right|^{nq}$ 1 1 $\frac{1}{(n-j+1)q} \leq \frac{1}{1+nq}$. Hence ,for $|z| > L_p$, $|F(z)| \ge |a_n| |z|^{n+1} [1 - {\alpha \choose 2}] \frac{z+1}{2} \frac{|a_j - a_{j-1}|^p}{2} \Big|^p \frac{1}{p} {\alpha \choose 2} \frac{1}{\log q} \frac{1}{q} \Big\}$ 1 1 $\frac{1}{2}$ 0 $1|a-a|^{p-1}$ 0 1_{r1} $(2)^{n} |a_j - a_{j-1}|$ $\frac{1}{\sqrt{p}} \sum_{j=1}^{n} 1$ $\sum_{j=0}^{n} \left(\sum_{z=0}^{n+1} \frac{1}{|z|^{nq}} \right)$ *p* $\left| \mu = 0 \right|$ u_n $n+1$ _{L1} $\left(\sum_{j=1}^{n} |a_j - a_j | \right)$ a_n ² a_n b_n c_n c_n d_n d_n $|F(z)| \geq |a_n||z|^{n+1} [1-\left(\left(\sum_{i=1}^{\lambda+1} \left|\frac{a_i-a_{i-1}}{a_i}\right|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{\lambda+1} \left|\frac{a_i-a_{i-1}}{a_i}\right|^p\right)^{\frac{1}{p}}$ $=$ $^{+}$ = $\geq |a_n||z|^{n+1} [1-(\hat{\sum}^{\lambda+1} |a_j-a_{j-1}|^p)^{\frac{1}{p}} (\hat{\sum}^{\lambda})$ $\left(\sum \left| \frac{r_j - r_{j-1}}{r_j} \right| \right)^p$ $(\lambda + 2)$ [1 1 1 1 1 1 $+2)^{q} \sqrt{\lambda+1} |a_{i} = |a_n| |z|^{n+1} [1 ^{+}$ $\frac{1}{\sqrt{1-\frac{(\lambda+2)^2}{\lambda}}}\left(\sum_{j=1}^{n}a_j-a_j\right)$ *p p j j n q n n* $a_i - a$ a_n ||z $\lambda + 2$ ^q $\frac{\lambda}{2}$

$$
= |a_n||z|^{n+1} [1 - \frac{(\lambda + 2)^{\frac{1}{q}}}{|z|^n} (\sum_{j=0}^{\lambda+1} \left| \frac{a_j - a_{j-1}}{a_n} \right|^p)^{\frac{1}{p}}]
$$

= $|a_n||z|^{n+1} [1 - \frac{L_p}{|z|^n}]$
> 0.

From the above development it follows that F(z) does not vanish for

$$
|z| > \max(L_p, L_p^{\frac{1}{n}}).
$$

Consequently all the zeros of $F(z)$ and hence $P(z)$ lie in

$$
|z| \le \max(L_p, L_p^{\frac{1}{n}}).
$$

That completes the proof of Theorem 1.

References

- [1] A.Aziz and N.A.Rather, Bounds for the Zeros of a Class of Lacunary-Type Polynomials, Journal of Mathematical Inequalities, Vol.7, No.3(2013),445-452.
- [2] A.L.Cauchy, Exercises de mathematiques, IV Anne de Bure Freses,1829.
- [3] E.Landau,Ueber den Picardschen satz, Vierteljahrsschrift Naturforsch, Gesellschaft Zirich, 51(1906), 252-318.
- [4] E.Landau, Sur quelques generalizations du theorem de M.Picard, Ann. EcoleNorm. 24, 3 (1907), 17-201.
- [5] M.Marden, The Geometry of the Zeros of a Polynomial in a Complex Variable, Math.Surveys No.3, AMS, Providence RI, 1949.
- [6]. G.V.Milovanovic, D.S.Mitriminovic,T.M.Rassias, Topics in Polynomials, Extremal Problems, Inequalities, Zeros, World Scientific Publishing Co.,Singapore,1994.
- [7] Q.G.Mohammad, Location of the Zeros of Polynomials, Amer. Math. Monthly, 74(1967),290-292.
- [8] Q.I.Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press Inc., New York, 2002.