
International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 58

Operating System Simulator to Translate

Assembler Code to Machine Code
Enrique Ayala

1
, Francisco A. Madera

2
, Luis Basto

3

Universidad Autónoma de Yucatán, Facultad de Matemáticas

Periférico Norte Tablaje 13615, Mérida, Yucatán, México

Abstract. We analysed and implemented an

Operating System software simulator to translate

assembler code into machine code. The simulator is

a computer program of a virtual machine which

contains a computer simplified computer

architecture and a memory manage module. The

simulator allows users to implement routines in

order to extend several functionalities such as

memory management, control processing, and any

other Operating System role. The simulator can also

be employed to make different practices to help in

the computers architecture understanding.

Keywords — Assembler Language, Machine

Language, Operating Systems, Compilers,

Translators.

I. INTRODUCTION

Assembler language and its conversion to the

machine code is a complex action since it requires

the knowledge of the computer architecture and the

set of input operations. To generate the output, it

needs the language analysis, translation’s

construction, lexical and syntactical elements

identification. The loading, execution, and

programming of the Operating System (OS) involves

the knowledge of the processor features such as

process concept, instruction set, and memory

management.

Nowadays, the lack of assembler language

programming in computer sciences academic

programs is notoriously. These academic programs

prefer to teach subjects such as systems

programming, operating systems and compilers

which require the understanding of the OS and the

architecture processor.

We construct a software simulator to help in the

learning of the assembler language, avoiding

hardware considerations that gives the majority of

the problems. In particular, the instruction set must

be known, according to the processor employed. We

could use this simulator to learn assembler in any

personal computer disregarding the type of processor.

Systems programming allows to create base

software to interact with the computer, accessing

directly to the sources and devices of the machine to

act as a service platform for the users and

applications, in such a way that the system

management is simplified. The Operating System

manages and provides mechanisms to access all the

hardware resources such as processor, memory, hard

disk, etc. Compilers deals with the programming

language tracking to create an executable file. The

literature is not enough for several concepts to be

appropriately understood and assimilated, more tools

are needed to achieve the required abstraction level.

In this work, we describe the implementation of a

software simulator to identify and learn the phases

and components involved from the compilation and

the machine code generation to load and visualize a

process into memory. The main goal is to show the

translation of the assembler code to the machine

code, step by step, showing every phase in depth.

We analyse and implement a computer program, a

simulator of a virtual machine which contains a

simplified computer architecture and a memory

manage module of the Operating System.

Additionally, a translator program was constructed

to have a source code in assembler language to be

translated to machine code.

II. RELATED WORK

The usage of simulators in education as a

didactical tool has generated successful cases due to

students are able to make several practices to

understand the concepts. Software simulators can be

found in several areas such as biology, medicine,

mechanic, management, etc.

In Computer Sciences, simulators are employed to

analyse computer inner process and control the time,

manipulate variables, and provide programming

tools to users in order to increase their knowledge

according to their individually requirements and

learning.

Leland [1] describes SIC (Simplified Instructional

Computer), a hypothetical machine to abstract

essential functions of a real system to help in the

systems programming learning by using a simplified

architecture. It also provides the architecture

description and the instruction set, emulators and

assemblers written in Pascal programming language.

Deitel and Deitel [2] proposed a virtual machine

development and its machine language called SML

(Simpletron Machine Language). This architecture

defines a 4-decimal digit form, the first 2 digits for

International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 59

the operation code and the last two digits for the

memory addressing. It employs a reduced instruction

set that work with a pair of records and a limited

memory of 100 words.

Lopes et al. [3] presented a proposal, for the

development of educational software simulator,

which has visual and interactive graphics, serving as

a teaching tool for both professors and students. The

simulator makes a representation of the functions,

related to memory management through a graphics

scene. However this software did not help in the

abstraction necessary to understand how operating

systems work.

Cahya [4] proposes a simulator that consists of a

computer system hardware and kernels which are

presented as a software. The CPU, memory, clock,

and Input/Output operations are simulated as a

software. The architecture of the simulator being

discussed has three modules: virtual machine

(Operating System) Kernels and Simulated

Computer Systems. Students can practice with their

own design and implementation, according to the

modules the simulator provides. It lacks a compiler

or translator, so it does not allow to write a code and

generate the machine code for a memory

visualization.

Saraswat and Gupta [5] designed and

implemented a process scheduler simulator, which is

focused on evaluating the suitability of various

Process scheduling algorithms for a Multimedia

Operating System such as: First Come First Serve

(FCFS), Multi-Level Feedback (MLFS), Shortest

Job First (SJF) and Earliest Deadline First (EDL). Its

objective was to compare and calculate several

metrics with such algorithms.

The afore mentioned proposals are limited for the

description and development of emulators to execute

machine code. The user interface is available in text

mode o with a graphical user interface but with few

options to interact with the virtual machine. They do

not define an OS core to manage the execution

programs and systems, for instance, the

multiprogramming. They neither have options to

manipulate variables to control the simulation

process.

III. THE OPERATING SYSTEM

An OS is the software that supports the

computer’s basic functions due to it manages

hardware resources. It is responsible for handling a

number of important functions such as the Central

Process Unit (CPU), memory management,

input/output devices, security, networking, devices,

and file systems, among others. OS can be

programmed to access the hardware resources

(Figure 1). This kind of programming is called

system programming (SP), and aims to produce

software which provides services to the computer

hardware. SP requires greater degree of hardware

awareness and also involves compilers, linkers,

macros, device drivers, networking.

Fig. 1. The Computer hardware and user

applications interface.

Computers understand the binary (machine)

language and perform basic operations millions of

times per second: add, subtract, memory data

movement, etc. To extent these basic operations,

there are many programming languages classified

according to the abstraction level as shown in Figure

2.

High Level Languages (C, C++, Fortran, and Java)

are the most common Programming Languages since

they are intuitive for humans. An assembly language

(ASM) is the most basic programming language

available for any processor, the code works only

with operations that are implemented directly on the

physical CPU.

Assembly languages generally lack high-level

conveniences such as variables and functions, and

they are not portable between various families of

processors. They have the same structure and set of

commands as machine language, but it allows the

programmer to use names instead of numbers. This

language is still useful for programmers when speed

is necessary or when they need to carry out an

operation that is not possible in high-level languages.

Fig. 2. The programming language levels.

International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 60

Machine Languages (ML) consist of binary

numbers recognizable by the CPU. The CPU

architectures can be RISC (Reduced Instruction Set

Computer) or CISC (Complex Instruction Set

Computer). Every processor type has its own set of

specific machine instructions which can be a data

processing, data transfer and flow control. Memory

holds ML programs and data, the CPU fetches ML

instructions from memory and executes them (Figure

3).

Fig. 3 The CPU fetches ML instructions from

memory.

ML instructions are made up of several fields, the

Opcode and the Operands. The Opcode stands for

operation code and it specifies the operation to be

performed. The Operand fields indicates where to

obtain the source and destination operands for the

operation specified by the opcode.

IV. THE ARCHITECTURE

Popular assemblers have emerged over the years

for the Intel family of processors: TASM (Turbo

Assembler from Borland), NASM (Netwide

Assembler for both Windows and Linux), and GNU

(Assembler distributed by the free software

foundation). A linker program is required to produce

executable files. Debuggers allow to trace the

execution of the program, and visualizes code,

memory, and registers.

The Instruction Set Architecture (ISA) is a

collection of assembly/machine instruction set that

can be managed with memory instructions and

programmer-accessible registers. Computers have

three main components interconnected with buses:

processor, memory and input/output devices. A bus

serves to transfer data, transfer addresses or for

control. A processor consists of an ALU (Arithmetic

Logic Unit), registers, control unit; and its

programming varies from one processor to another.

The memory can be referenced by an ordered

sequence of bytes. The physical address space is

determined by the address bus width, for instance,

the Pentium has a 32-bit address bus.

Fig. 4. An example from ASM to ML: age

classification.

The simulator proposed in this work utilizes an

architecture that is a variation of the model [1] and

[2]. The instruction word is formed by 6 decimal

digits, the first two digits for the operation code and

the last four digits for the memory address. The

maximum addressing memory store up to 10,000

words. Variables are integer and the string data has

40 characters.

An example of the ASM – ML is illustrated in

Figure 4. Memory usage is 16 + 2 + (3x40) + 25 =

163; there are 16 ASM instructions, 2 integer

variables (E, M), string variables (S1, S2, N). This

indicates that 163 bytes are held to create the

processes. The first instruction is placed on the

position memory 0. Since the maximum memory is

10,000, then an address is labelled with 4 digits.

V. THE SIMULATOR

The Prototype Model [6] was chosen for the

implementation, and consists on the software

development while having the functional elements

visible. Additionally, this is feedback, tested, and

adjusted according to the user requirements.

C++ programming language and Qt Creator IDE

were employed for the simulator construction. These

are handy for a friendly graphic user interface and

contains data structures and algorithms templates.

The simulator was implemented in a PC, an Intel

Duo Core Processor 2.16 GHz , 4GB RAM. Basic

instructions are needed to run ML programs: ASM-

ML translator, and operative system to allow the

interaction with end users. Aside from this, the

simulator provides tools to the users to add modules

and algorithms. The simulator design is depicted in

Figure 5.

International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 61

Fig. 5. Simulator architecture design.

Simulator modules are the user interface, ASM to

ML translator, memory usage, and multiprocessing

handler. The user interface has two main options,

program generation and simulation. ASM programs

are loaded or created, so that they can be edited

(Figure 6).

Fig. 6. Editing ASIM files.

These files are translated to ML, by using two

phases in order to identify the instruction memory

addresses (Figure 7).

Fig. 7. ASM to ML translation.

If the translation is performed successfully, a ML

file is generated, otherwise an error message is

displayed. The ML files generated are ready to be

used to create processes and then to be run. A

process is enabled with the Start Simulation button

(Figure 8).

Fig. 8. The ML files are ready to start the simulation

process.

There is a status window where the information

displayed, taken from the PCB (Processes Control

Block), is related to the instructions on memory,

process status and registers (Figure 9). The PCB

structure stores the process identifier, state, size of

process memory, begin and end of space memory,

memory pointer for instruction on execution, stack

pointer, accumulator register, and current instruction

of ML file.

Fig. 9. The status windows of a running process.

Figure 10 depicts two running processes, displaying

the information about the executed instruction, the

assembler mnemonic and the number indicates the

variable in real memory address. If the depuration

mode is unmarked, on the Simulation tab, then the

assembler instructions are hided at window console

and only information of input and output instructions

will be shown.

International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 62

Fig. 10. Two running processes and their output data,

in debugger or depuration mode.

Programs are loaded to memory in a partitioned

allocation [7] using a contiguous memory assign

algorithm with fixed partition in every process

created; afterwards a PCB structure is added to a list.

This list is controlled according to a Round-Robin

management [8], where each process has a lapse of

time called quantum and is assigned to the processor

in a counter clock wise order. A process can change

its status (New, Ready, Running, Locked, Finalized)

and the information is displayed in the process

console (Figure 11).

Fig. 11. The processes management

Figure 12 illustrates the OS interchange process,

changing the state of one of such running processes

to allow executing, restoring registers of CPU, and

changing the state of the other process to be locked.

It also saves all registers into its PCB, following the

principles of Time Sharing Systems and

Multitasking [9].

Memory monitor is activated with the “Show

Memory” button and displays information of the

memory status. It also provides options to remove

processes. In Figure 13 the processes with Id 1 and

Id 2 are in locked status, the memory partition for

ej_serie.lm image program begins at position 0 and

ends at position 99.

Fig. 12. The switching process [10]

Fig. 13. Memory monitor window.

VI. CONCLUSION

The design and implementation of a software

simulator is presented. This simulator translates

ASM code to Machine Code using the core of an

operating system with multiprocessing. ASM and

ML files can be loaded, created and edited. The

memory management allows to visualize the busy

memory and allows to release during the running

time. Many processes can be activated at the same

time, making the memory management to arrange

the instructions and variables in the memory. This

kind of simulators is not easy to find in the literature,

so that the design of the program simulator could

serve as the basis for an extended simulator with

more functionalities.

The simulator software was used as a didactical

tool in the base programming subject for the

computer science bachelor program of the Yucatan

University. Students implemented some routines for

memory management, processes management,

running and input times, in order to test the

performance of the operations. Scheduling routines

were implemented: First Come First Serve (FCFS),

Shortest-Job-First (SJF) scheduling, Priority

scheduling, random choosing. Other routines were

International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 63

also implemented to assign memory to the processes

depending on the availability: the first memory room,

the best memory room size, the worst memory room

size.

REFERENCES

[1] B. Leland. “Software de Sistemas. Introducción a la

Programación de Sistemas”. Addison Wesley, 1988.
[2] H. Deitel, P. Deitel, Como Programar en C/C++ y Java. 4ª

Edición, Pearson, 2004.

[3] Á. R. Lopes, D. A. de Souza, J. R. B. de Carvalho, W. O.
Silva and V. L. P. de Sousa, "SIME: Memory simulator for

the teaching of operating systems," 2012 International

Symposium on Computers in Education (SIIE), Andorra la
Vella, pp. 1-5, 2012.

[4] S. Cahya, "Designing Operating System Simulator: A

Learning Tool," 2009 11th International Conference on

Computer Modelling and Simulation, Cambridge, pp. 156-

160, 2009.

doi: 10.1109/UKSIM.2009.92

[5] P. K. Saraswat and P. Gupta, "Design and Implementation

of a Process Scheduler Simulator and an Improved Process
Scheduling Algorithm for Multimedia Operating

Systems," 2006 International Conference on Advanced

Computing and Communications, Surathkal, pp. 513-517,
2006.

[6] R. Pressman. Ingeniería de software un enfoque práctico.

México: McGraw-Hill, 2005.
[7] Andrew, Tanenbaum, “Sistemas Operativos Modernos”. 3ª

Ed. México, 2009.

[8] M. Barrionuevo, M. F. Piccoli, R. Apolloni. Una
herramienta de Simulación para la Planificación de

Procesos. Revista Iberoamericana de Educación en

Tecnología y Tecnología en Educación. No. 9. Abril 2013.
[9] A. Silverschatz, P. Galvin, G. Gagne. “Operating System

Concepts. 9th Ed”, 2013.

[10] (2017), Gitbook.textbook of Operating System [Online].
Available:

https://www.gitbook.com/book/ayushverma8/test-

book/details

