
International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 21

State Management, Partial and Full State

Saving Strategy - JavaServer Faces
Vijay Kumar Pandey

Director of Technology Solutions, Intueor Consulting, Inc.

Irvine, CA (United States of America)

Abstract. The article is intended to provide an in-

depth understanding to the reader, on the concepts

of State Management, Partial and Full State Saving

strategy and the under the cover working of the State

Management Methods in JSF 2.2. The intended

audience for this article include application

architects, software designers and software

programmers who participate in the design,

architecting and development of robust and complex

enterprise-wide web-based applications using JSF
2.2. This document assumes that the reader has a

basic understanding of JSF 2.2 and Facelets.

Keywords – State Management, Partial State

Saving, State Saving Method,Facelet, JSF, JSF 2.2,

MyFaces.

I. INTRODUCTION

This article divesdeep into the JSF 2.2 State

Management feature. JSFbeing mainly a stateful

framework and HTML being stateless, JSF provides

a very comprehensive state management feature with
the introduction of Partial State Saving(PSS - via the

web context config param

javax.faces.Partial_State_Saving) feature. By default,

PSS is enabled, meaning JSF does not save the full

state of components during the RenderResponse

phase of the JSF Life Cycle. The JSF framework

saves only the partial state (also referred to as „delta‟)

which is then used on subsequent postBack requests

during the Restore View phase. JSF provides an

option through which the full state may also be

saved for certain viewids, when PSS is set to true

(javax.faces.Full_State_Saving_View_Ids, allowing
comma separated viewids). Additionally, JSF

provides an option to save the state either on the

server or on the client using the web context config

param (javax.faces.State_Saving_Method).The

default value in MyFacesisserver and the ability for

a programmer to change it to client. There are pros

and cons that should be considered carefully while

setting this parameter. At a high-level, saving the

state on the server consumes more memory, may

warrant session replication among servers set up in

clusters, may also have to consider expired
exceptions (most notably in applicationsthat utilize

multiplebrowser tabs). On the other hand, saving the

state on the client could lead to additional usage of

network bandwidth, and may increase vulnerability

to Cross-Site Request Forgery (CRSF) attacks. This

article provides code samples from Apache MyFaces

2.2.12 JSF Implementation, for a better

understanding of the different scenarios.

II. IMPORTANT JSF API CLASSES ASSOCIATED

WITH STATE MANAGEMENT

A pre-requisite to understanding State

Management in JSF 2.2, is the knowledge of the

different API classes that are utilized in State

Management feature and how they work internally:

A. UIComponent

The base abstract class for all user interface

components is javax.faces.component.UIComponent.

This classdefines the state information and

behavioural contracts for all components through a

Java programming language API.

UIComponentprovides the mechanism of saving and

restoring individual component state.

A component from any of the component libraries
or a custom component musthave UIComponent as

one of its super classes (in the chain of super classes).

JSF implementation provides UIComponentBase

that extends from UIComponent,providingdefault

implementations of various UIComponentmethods,

and relieves application developers from the risk of

gettingadversely affected due to an API change in

UIComponent. Then there are other types of

components i.e.,

 UIOutput extends from UIComponentBase,

whichis used for displaying values during
rendering of the component.

 UIInput extends from UIOutput,which is used

for displaying valuesbut most importantly,

during post back requests (likehtml <input>

type tags)their values will be submitted. It

should be noted that any component that

submitsits values, should have UIInput as one

of the super classes in its chain. Of course, one

can create a totally new type of

UIInputextending from UIComponentBase but

that basically will lead to reinventing the

wheel.
The UIComponent class implements the interface

PartialStateHolder, which in turn extends

StateHolder interface. This is how UIComponent is

associated with state management interfaces to take

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 22

part in either full or partial state saving and in

restoring the state in postBack requests.

B. StateHolder Interface

Methods of this interface include:

void restoreState(FacesContext facesContext, Object state);

Object saveState(FacesContext facesContext);

void setTransient(boolean newTransientValue);

boolean isTransient();

C. PartialStateHolder Interface

Methods of this interface include:

void markInitialState();

boolean initialStateMarked();

void clearInitialState();

D. ViewHandler

ViewHandler is class through which JSF

implementation abstracts the low-level details of a

request and response, and essentially makes it

independent of the servlet APIs. A ViewHandler
manages the component-tree-creation and

component-tree-rendering parts of a request lifecycle

(i.e. "create view", "restore view" and "render

response"). The main methods of this class that take

active part in state management features are:

public abstract UIViewRoot restoreView(FacesContext

facesContext, String viewId);

public abstract void writeState(FacesContext facesContext)

throws IOException;

E. StateManager

StateManager is the main class that handles the

management of state saving and state restore. It

works hand-in-glove with the ViewHandler class.

This class is usually invoked by a concrete

implementation of ViewHandler. Note that the

ViewHandler isolates JSF components from the

details of the request format, while StateManager

isolates JSF components from the details of the

response format. Since request and response are

usually tightly coupled, the StateManager and

ViewHandler implementations are also tightly
coupled (i.e. the ViewHandler and StateManager

implementations come as pairs).

F. StateManagementStrategy (“sms”)

The mechanism of saving and restoring the Partial

State is implemented differently in Mojarra and

MyFaces. Mojarra uses tree visiting with a pluggable

mechanism, while MyFaces uses a non-pluggable

“facets + children” traversal. To overcome this issue,
JSF 2.2 makes it mandatory to use

StateManagementStrategy (involving a pluggable

mechanism), while the tree visiting mechanism is

fully capable of saving the partial state. The methods

of this class are:

public abstract UIViewRoot restoreView(FacesContext

facesContext, String viewId, String renderKitId);

public abstract Object saveView(FacesContext facesContext);

StateManager uses StateManagementStrategy, to

delegatethe execution of saveView and restoreView.

Therefore, if StateManagementStrategy is available,

it takes over theresponsibility of saving view and

restoring view.

The mechanism to access sms is through

ViewDeclarationLangauge. It should be noted that,

currently sms is only available for Facelets and not

for JSPs. State Managementfor JSPs will fall back

on the implementation of StateManager.

ViewDeclarationLanguage vdl =

facesContext.getApplication().getViewHandler().getViewDeclar

ationLanguage(facesContext,viewId);

StateManagementStrategy sms =

vdl.getStateManagementStrategy(facesContext, viewId);

G. ViewDeclarationLanguage

JSF implementation provides for multiple view

types (XHTML as Facelets, JSPs, etc) and therefore,

ViewHandler, for the most part, delegates to the

implementation of the ViewDeclarationLanguage

(aka VDL). Some of the main methods of VDL are:

public abstract UIViewRoot createView(FacesContext

context, String viewId);

public abstract void buildView(FacesContext context,

UIViewRoot view) throws IOException;

public abstract void renderView(FacesContext context,

UIViewRoot view) throws IOException;

public abstract StateManagementStrategy

getStateManagementStrategy(FacesContext context, String

viewId);

public abstract UIViewRoot restoreView(FacesContext

context, String viewId);

H. ResponseStateManager

ResponseStateManager is the helper class to

StateManager, that knows the specific rendering
technology being used to generate the response. It is

accessed through RenderKit.

III. STATE MANAGEMENT LIFECYCLE

This section describes how the different API

classes work together to execute the JSF Lifecycle,

from the perspective ofState Management.

A. Initial Request

Once the request reaches the Render Response
phase of the JSF Lifecycle, the view is built. What

that means is that the XML markup is converted into

Facelet (or taken from the facelet cache) and all tag

handlers in the chainare applied, creating a full-

fledged component tree stored inside UIViewRoot.

buildView: This process of building the view

always occurs, either in Render Responsephase (for

Initial Request) or in Restore View phase (for

subsequent postBack requests). At this point, all the

components along with UIViewRoot are at their

initial state.

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 23

This happens through:

viewHandler.buildView(facesContext, uiViewRoot);

Of course, as described

earlier,ViewHandlerdelegates to the appropriate

VDL (ViewDeclarationLanguage) for buildView.

vdl.buildView(facesContext, uiViewRoot);

At this point UIViewRootis traversed in a

recursive manner through all non-transient

components and
component.markInitialState()method is executed.

It should be noted that the markInitialState

method is from PartialStateHolder. This method

simply sets a boolean instance variable (in

UIComponent) to true for future checks on the initial

state. Both Mojarra and MyFaces provide this

implementation in the base class UIComponent.

Once the buildView method completes the

recursive execution, all non-transient components

are marked with their initial state. This essentially
means that any changes to components in terms of

their attributes (which are part of the State

Management, and any new dynamic components

being added) are marked as partial or delta changes

in Partial State Saving.

renderView: As part of this phase, after

buildView is completed, execution will move to

rendering of the view via the following code

viewHandler.renderView(facesContext, uiViewRoot);

Again, ViewHandlerdelegates to the appropriate

VDL (ViewDeclarationLanguage) for renderView.

vdl.renderView(facesContext, uiViewRoot);

During the rendering of view,

viewRoot.encodeAll(facesContext) is executed,

which internally ends up calling all the components

in the tree with their encodeAll. Also,encodeAllcalls
encodeBegin(facesContext),

encodeChildren(facesContext) or

children.encodeAll(facesContext), for all the

children and then encodeEnd(facesContext).

HTML form encoding: After encodeBeginis

executed and all children have been encoded, a

hidden input is added in the form with the name

clientId of the form component and with suffix

_submit with a value of 1. This input is used as part

of the decode of the form component, to determine

whether the form was submitted or not (during

Apply Request Values phase) in postBack request).

<input type="hidden" name="j_id_9_SUBMIT" value="1" />

Since State Management is associated with the
form, it is important to know which form was

submitted.

State Writing: Prior to encodeEndcompletes for

the form component, State Saving Methodmust be

executed (server or client). This is done by executing

viewHandler.writeState(facesContext), which

delegates the call to StateManager,which in turn

delegates to ResponseStateManagerto write the state.

In an HTML type response in servlet environment,

this is accomplished through:

RenderKit renderKit = facesContext.getRenderKit();

ResponseStateManager responseStateManager =

renderKit.getResponseStateManager();

responseStateManager.writeState(facesContext, state);

Based upon the State Saving Method(client or

server) and partial or full state saving, a state

encoded token is written as an input hidden typewith

the name javax.faces.ViewState. For e.g., a server

state saving will create a response like the following:

<input type="hidden" name="javax.faces.ViewState"

id="j_id__v_0:javax.faces.ViewState:1"

 value="r7HbNKeUvF+sKfI6aHVqMBUD3UfWAfGw

CzXUds3N0twkYZrv" autocomplete="off" />

In a client mode of state saving, the above value

attribute has a much longer data value because it

containsnot just the encoded token, but also a

full/partial state encoded value. If the

viewwastransient, the value of the above field will

bestateless. Astateless view can be defined by

having the f:view tag in the XHTML with the

attribute transient set to true.

The above hidden input does not have the id value

as javax.faces.ViewState because in multi HTML
forms, id will beduplicated and that will be wrong,

since one cannot have a html document with

duplicate id, so it‟s the name attribute that has the

value javax.faces.ViewState.

State Saving in the Session: WhenState Saving

Method is set to server, and the encoding of the

UIViewRootis complete, an important process after

that is the actual saving of the partial or full state in

the session. This saved state is used in postBack

request,and mapped with the token that was sent in

the response. Executing saveView on the
StateManagerdelegates to StateManagementStrategy.

StateManager stateManager =

facesContext.getApplication().getStateManager();

stateManager.saveView(facesContext);

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 24

In a nutshell, the above saveView translates to:

ViewDeclarationLanguage vdl =

facesContext.getApplication().getViewHandler().getViewDeclar

ationLanguage(facesContext, uiViewRoot.getViewId());

StateManagementStrategy sms =

vdl.getStateManagementStrategy(facesContext, viewId);

Object savedState = sms.saveView(facesContext);

//Internal Implementation - save the above serializedView in

the //session in a map type implementation, implemented as LIFO

//(Last In First Out)

JSF provides a feature to save a certain number of
views (for server state), so that an application

accessed in multiple browser tabs/windows can

workforthe same session. MyFacesweb context

config parameter that manages this count is

org.apache.myfaces.Number_Of_Views_In_Session

and is set to a default value of 20. As a result, if

21tabsare opened for the same session, with different

non-transient views, a ViewExpiredExceptionwill be

encountered when the user returns to the first tab and

attempts a postBack requestbecausethe first saved

view state would have been removed while saving
the state for the 21stview.

Saved State: During saving of the view (

ObjectsavedState =

sms.saveView(facesContext)),UIViewRoot

component tree is visited to reach each

component,and component‟ssaveState methodis

executed.The stateis put in a map keyed by the

component‟s clientId. To ensure that this tree visit

does not involve the virtual components inside

UIData (e.g. ui:repeat, h:datatable etc.), a hint is set

while visiting the components:

facesContext.getAttributes().put(SKIP_ITERATION_HINT,

Boolean.TRUE);

A code sample (showing only the state saving)

from MyFacesis included below for a better

understanding:

facesContext.getAttributes().put(SKIP_ITERATION_HINT,

Boolean.TRUE);

try{

uiViewRoot.visitTree(getVisitContextFactory().getVisitContext(

facesContext, null, VISIT_HINTS), new VisitCallback(){

 public VisitResult visit(VisitContext context,

UIComponent target){

 FacesContext facesContext =

context.getFacesContext();

 Object state;

 if ((target == null) || target.isTransient()){

 // No need to bother with these components or

//their children.

 return VisitResult.REJECT;
 }

 if (target.getParent() != null){

 state = target.saveState (facesContext);

 if (state != null){

 // Save by client ID into our map.

 states.put (target.getClientId (facesContext),

state);

 }

 return VisitResult.ACCEPT;

 }else{

 //Only UIViewRoot has no parent in a

//component tree.

 return VisitResult.ACCEPT;

 }

 }

 });

 }

 finally{

facesContext.getAttributes().remove(SKIP_ITERATION_HINT);

 }

 if (!uiViewRoot.isTransient()){

 Object state = uiViewRoot.saveState (facesContext);

 if (state != null){

 states.put (uiViewRoot.getClientId (facesContext),

state);

 }

 }

The returned map is the actual state (full or partial)

that is then encoded (and can be serialized,encrypted

too) and saved in the session.

Saved View Scope: As part of saving the state,

the actual data/bean model that provide values

through EL expressions, is not saved as part of

component state, but the references are saved as part

of their scope. For e.g.,

 RequestScope–is destroyed once request is

completed

 ViewScoped (CDI) – This introduced as a part

of the Context Dependency Injection (CDI) in

JEE7 and differs from managed bean

ViewScoped, is put in a scope such that the

bean instance is available until and unless the
view has navigated to a different view.

Therefore, if CDI is available, the bean

annotated with this CDI scope is saved in a

JSF implementation session scoped CDI

bean.If not, it is saved directly in the session

where the state is saved.

B. PostBack Request

The best way to determine a request is a postBack
request (for e.g., HTML form submission), is to

check facesContext.isPostBack(). The first step of

the postBack request in an HTML & servlet setting

is to evaluate the request parameter

javax.faces.ViewState.

facesContext.getExternalContext().getRequestParameterMap().co

ntainsKey(“javax.faces.ViewState”);

Restore State:The first phase of the JSF Lifecyle

i.e.,Restore Viewis invoked for restoring the state.

Of course, before a view can be restored, it must be

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 25

built first (likebuildView, component marking to the

Initial State, as described in the Initial Request). At

this point, the UIViewRootis the same, as was built

in Initial Request. Restoring View happens through

the following:

UIViewRoot viewRoot =

viewHandler.restoreView(facesContext, viewId);

UIViewRoot viewRoot = vdl.restoreView(context, viewId);

This internally delegates the restore to the

StateManager and StateManagementStratgey.

Application application = facesContext.getApplication();

ViewHandler applicationViewHandler =

application.getViewHandler();

String renderKitId =

applicationViewHandler.calculateRenderKitId(facesContext);

UIViewRoot viewRoot =

application.getStateManager().restoreView(facesContext,

viewId, renderKitId);

StateManager further delegates the task of

restoring the view to StateManagementStrategy.

StateManagementStrategy sms =

vdl.getStateManagementStrategy(facesContext, viewId);

UIViewRoot viewRoot = sms.restoreView(facesContext, viewId,

renderKitId);

Restore state involves the recursive execution

through all components and children, as shown

below:

component.restoreState(context, componentState);

Since initial state is built using Facelet, using

partial state saving (PSS) is almost always a better

approach than full state save and restore. The

component state object is either retrieved from the

session (for server state) or decoded from the
javax.faces.ViewState request parameter.

StateManagementStrategy will go through the

ResponseStateManager for restoring the state.

ResponseStateManager manager =

getRenderKitFactory().getRenderKit(context,

renderKitId).getResponseStateManager();

Object[] state = (Object[]) manager.getState(context, viewId);

The above method gets the request parameter

value javax.faces.ViewState and then decodes it

(internally the decoding involves cipher and other
mechanisms, to make sure the request is not a

hacked one). Based on this token, JSF

implementation decodes the actual state from the

session or from the request parameter value.

MyFacesimplementation returns the state as an array

of objects.

The State is essentially a map of clientId with the

associated state of the component; states is the

Object[1] from the above “state”.

Object viewRootState =

states.get(viewRoot.getClientId(context));

Based on the clientId, the state for a particular

component is retrieved and passed to the

component‟s restoreState method to restore it.

Component Types (with Attached Objects):The

main types of UIComponent‟s are UIOutput and

UIInput. The following section explains the chain of

component types, how they extend from each other,

andthe type of objects state managed in these types

of components, by default.

 UIComponentBase extends UIComponent:

 Manages the state for

ComponentSystemEventListener, one of

the methods used to subscribe to the
event (theevents are managed in such a

way that when a component state is saved,

the event listeners are also saved)
public void subscribeToEvent(Class<? extends SystemEvent>

eventClass, ComponentSystemEventListener componentListener)

 Manages the state for ClientBehavior,

which can be added to component

through:
public void addClientBehavior(String eventName,

ClientBehavior behavior)

 Manages the state for FacesListener,

which can be added to component

through
protected void addFacesListener(FacesListener listener)

UIOutput extends UIComponentBase: Manages

the state for Converter, which can be added through

public void setConverter(Converter converter)

UIInput extends UIOutput: Manages the states for

all the Validators associated with the component; a

Validatorcan be added to the component through

public void addValidator(Validator validator)

StateHelper: The JSF implementation supports

State Management of any UIComponent through the

following mechanism

 UIComponent‟s implementation is

Serializable

 UIComponent‟s properties are managed with

StateHelper

 UIComponent provides its own
implementation of saveState and restoreState

The way to get hold of the StateHelper is through

component.getStateHelper(). StateHelper also

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 26

extends from StateHolder. Along with

that,StateHelper provides following methods:

 void add(Serializable key, Object value);

 Object eval(Serializable key);0

 Object eval(Serializable key, Object defaultValue);

 Object get(Serializable key);

 Object put(Serializable key, Object value);

 Object put(Serializable key, String mapKey, Object value);

 Object remove(Serializable key);

 Objectremove(Serializable key, Object valueOrKey);

The actual implementation of StateHelper is

managedby default, in the class UIComponent (in

both Myfaces and Mojarra implementation of JSF).

For e.g.,the following sample code outlines how the

styleproperty is managed with the help of
StateHelper:

public String getStyle(){

 return (String) getStateHelper().eval(PropertyKeys.style);

}

public void setStyle(String style){

 getStateHelper().put(PropertyKeys.style, style);

}

The implementation of StateHelper manages both

the full and partial (delta) state, as well as
UIComponentBase‟ssaveState and restoreState

methods.

public Object put(Serializable key, Object value){

 Object returnValue = null;

 if (_component.initialStateMarked()){

 if (_deltas.containsKey(key)){

 returnValue = _deltas.put(key,

value);

 _fullState.put(key, value);

 }else if (value == null

&& !_fullState.containsKey(key)){

 returnValue = null;

 }else{

 _deltas.put(key, value);

 returnValue =

_fullState.put(key, value);

 }

 }else{

 returnValue = _fullState.put(key, value);

 }

 return returnValue;

}

If the above put method is executed when

initailStateMarked has already been marked true for

the component, the value is also assigned to the

_deltas. The primary difference between

StateHelper‟sget and eval methods is that eval looks

for a ValueExpression that might be present for the

key, and then evaluatesit, if there were no literal

values set.

public Object eval(Serializable key, Object defaultValue){

 Object returnValue = _fullState.get(key);

 if (returnValue != null){

 return returnValue;

 }

 ValueExpression expression =

_component.getValueExpression(key.toString());

 if (expression != null){

 return

expression.getValue(_component.getFacesContext().getELContex

t());
 }

 return defaultValue;

}

To understand the eval method better, refer below

to the creation of an input text tag in XHTML using:

<h:inputText value="#{testController.firstName}" />

During the postBack request, in process validation

phase, the value that was submitted for firstNameis
converted and then set through setValue method.

Ifthe tag has a ValueExpression for the value

attribute, in the validate phase a literal value is set

against the value attribute. When StateHelper‟seval

method is executed for any subsequent invocation of

getValue, it returns the literal value and fetches the

value from the ValueExpression only after it has

been reset to null.

IV. CONCLUSION

This paper presents a thorough deep dive

understanding of how state management along with
state saving strategy works during JSF Lifecyle and

how state is saved duringInitial Requestand state

restore during postBack requests. It also discusses

the concept of how ViewScoped beans are saved in

session for stateful views. It helps to clear any

misunderstanding that UIComponents instances

themselves are not saved, but it‟s their attributes that

are saved and then reused during restore of the state.

Proper understanding of state management, partial

and full state saving can help architects to better

design complex enterprise system based on JSF 2.2.

REFERENCES

[1] JavaServer Faces 2.2 API, website -

https://javaserverfaces.github.io/docs/2.2/javadocs/index.ht

ml?overview-summary.html

[2] JavaServer Faces Tutorial by Oracle, website -

https://docs.oracle.com/javaee/7/tutorial/jsf-

intro.htm#BNAPH

[3] MyFaces 2.2 - website - http://myfaces.apache.org/core22/

https://javaserverfaces.github.io/docs/2.2/javadocs/index.html?overview-summary.html
https://javaserverfaces.github.io/docs/2.2/javadocs/index.html?overview-summary.html
https://docs.oracle.com/javaee/7/tutorial/jsf-intro.htm#BNAPH
https://docs.oracle.com/javaee/7/tutorial/jsf-intro.htm#BNAPH
http://myfaces.apache.org/core22/

