
International Journal of Computer Trends and Technology Volume 73 Issue 3, 125-132, March 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I3P116 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Reducing Incident Mean Time to Resolution Using

Elasticsearch and Large Language Models

Govind Singh Rawat

DevOps Engineer, TikTok U.S. Data Security Inc., California, USA.

1Corresponding Author : govindrawat54@gmail.com

Received: 23 January 2025 Revised: 28 February 2025 Accepted: 20 March 2025 Published: 30 March 2025

Abstract - Enhancing incident resolution is a key focus in modern Site Reliability Engineering (SRE). This paper presents a

system that combines ElasticSearch (ES) with Large Language Models (LLMs) to reduce Mean Time to Resolution (MTTR).

By embedding historical alarm data, extracting essential features, and leveraging k-nearest neighbors (kNN) search, the

system efficiently links past incidents, retrieves relevant resolutions, and improves operational response through LLM

interaction. This continuous feedback loop enhances incident response speed and facilitates faster incident resolution.

Keywords - ElasticSearch (ES), Incident mitigation, K-nearest neighbors search, Mean Time to Resolution, Site Reliability

Engineering.

1. Introduction
In large-scale distributed systems, swift and accurate

incident response is critical to minimizing downtime and

ensuring system reliability. Traditional monitoring solutions

generate high-severity alarms to notify engineers of

potential failures; however, diagnosing and resolving these

alarms remains a significant challenge. Current incident

response systems rely heavily on manual investigation,

leading to prolonged resolution times and increased

operational costs.

Existing solutions, including widely used observability

tools like Datadog, Splunk, and Prometheus, offer real-time

monitoring and alerting but lack key capabilities essential

for efficient troubleshooting. These tools primarily depend

on predefined queries, dashboard-based investigations, or

manual correlation of logs, all of which can be time-

consuming. Moreover, they do not effectively leverage

historical resolutions or contextual insights to aid engineers

in incident response.

A major research gap lies in integrating intelligent

search mechanisms, contextual retrieval, and automated

recommendations for incident resolution. While previous

studies have explored log-based anomaly detection and

knowledge graph-enhanced troubleshooting, they have not

sufficiently addressed the need for a unified system that

combines historical insights, efficient search capabilities,

and AI-driven contextual guidance.

This paper proposes an intelligent incident resolution

system that integrates Elasticsearch [1] for high-speed log

retrieval, Large Language Models (LLMs) [2] for contextual

troubleshooting insights, and k-nearest neighbor (kNN)

search [3] for historical incident pattern recognition. By

embedding these technologies within Site Reliability

Engineering (SRE) [4] on-call [5] workflows, the system

aims to enhance incident response efficiency, reduce MTTR

[6], and provide engineers with immediate access to relevant

historical resolutions. This approach bridges the gap in

incident management solutions by offering a proactive,

context-aware resolution framework tailored to large-scale

distributed environments.

2. Problem Statement
Traditional incident response systems in large-scale

distributed environments [7] often rely on basic monitoring

tools and reactive maintenance, leading to prolonged

downtime and degraded system reliability. Key challenges

in incident management for Site Reliability Engineers

include:

• Lack of efficient real-time diagnostic capabilities.

• Insufficient contextual information to quickly resolve

alarms.

• High Mean Time to Resolution (MTTR) due to manual

intervention and inefficient search.

• Limited automation in identifying and responding to

related incidents

• Difficulty in learning from historical incidents to

predict and prevent recurring issues.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
about:blank

Govind Singh Rawat / IJCTT, 73(3), 125-132, 2025

126

A modern incident resolution system should address

these challenges by leveraging efficient search capabilities,

proactive failure detection, and automated remediation

processes. Integrating technologies like ElasticSearch (ES)

for fast search, k-nearest neighbor (kNN) search for

historical context matches, and LLM for contextual insights

can significantly enhance the speed of incident resolution,

reducing MTTR, promoting system reliability and efficiency

during the issue resolution process.

3. Literature Review
Efficient alarm and incident management in distributed

systems is critical to maintaining system reliability and

minimizing downtime. As modern infrastructures grow

increasingly complex, organizations rely on automated

monitoring, anomaly detection, and intelligent

troubleshooting tools to manage system failures. However,

existing approaches still present gaps in providing seamless,

context-aware incident resolution. This review explores

various advancements in anomaly detection, knowledge

graph-enhanced troubleshooting, log retrieval, and the

integration of Large Language Models (LLMs) to improve

incident management workflows.

Organizations have relied on rule-based alerting

systems and manual log analysis to detect and address

incidents. These traditional approaches suffer from high

false positive rates and lack scalability when dealing with

distributed cloud environments, which generate

overwhelming amounts. Previous research on log-based

anomaly detection [8] has highlighted the advantages of

applying machine learning models to predict failures.

Traditional ML methods, such as decision trees and support

vector machines (SVMs), have demonstrated moderate

success. However, research on k-nearest neighbor (kNN)

search in anomaly detection highlights its ability to

recognize recurring failure patterns, reducing engineers’

time diagnosing similar issues.

Structured data representation through knowledge

graphs has proven effective in improving diagnostic

efficiency [9]. Unlike traditional lookup-based systems,

knowledge graphs encode relationships between system

components, past incidents, and resolution steps to enable

context-aware recommendations. By integrating domain-

specific knowledge, these graphs can enhance incident

resolution strategies beyond purely ML-driven approaches.

This paper talks about how existing resolution knowledge

can be combined with kNN search to provide faster

correlations to solve the issues promptly.

Incident resolution workflows require efficient log

indexing and retrieval mechanisms to extract relevant

historical data. The use of ElasticSearch for log indexing

and retrieval [10] has emerged as a scalable solution for

querying large datasets. While ElasticSearch allows for

keyword-based searches, its reliance on manual query

construction can slow down the incident resolution process.

Recent approaches propose embedding-based retrieval

techniques, such as vector search and semantic similarity

models, to enhance search relevance. This paper builds on

these advancements by integrating kNN-based retrieval into

ElasticSearch, reducing the need for manual searches and

enabling engineers to retrieve past solutions based on

semantic similarity rather than keyword matches.

Recent developments in Retrieval-Augmented

Generation (RAG) demonstrate how combining Large

Language Models [11] with document retrieval can offer

context-sensitive troubleshooting assistance. However,

challenges such as hallucination risks, data freshness, and

model interpretability need to be addressed to fully integrate

LLMs into critical incident response workflows. This paper

proposes a hybrid approach that leverages RAG,

ElasticSearch, and kNN retrieval of historical resolutions,

ensuring highly relevant, real-time troubleshooting

assistance while minimizing AI-related risks.

Based on some of the prevalent observability, alarming,

and monitoring tools like Datadog [13], Splunk [14], and

Prometheus [15], they still lack several essential

capabilities:

Datadog offers real-time monitoring and alerting with

integrations across cloud platforms, allowing engineers to

detect anomalies proactively. While it supports event

correlation, it lacks embedding-based retrieval to provide

engineers with past solutions for similar alarms, which is

catered to in this paper.

Splunk is a popular tool for log management and

analytics, offering real-time insights into system behavior.

However, its reliance on manual search queries and

dashboard-based investigations can delay incident

resolution. This paper utilizes kNN-based retrieval in

ElasticSearch, reducing the need for manual searches and

enhancing response efficiency.

Prometheus is an open-source monitoring system

designed for time-series data collection and alerting. While

effective in monitoring system health, it lacks context-aware

troubleshooting capabilities and does not store historical

solutions for similar alarms, which is being addressed in this

paper.

The proposed system addresses the above gaps by

integrating Large Language Models (LLMs) to offer

structured troubleshooting recommendations. Incident

response teams typically rely on communication channels to

track details and steps taken by engineering teams. Some

Govind Singh Rawat / IJCTT, 73(3), 125-132, 2025

127

teams prefer using live chat platforms like Slack [16] or

Microsoft Teams [17]. However, tracing back previous

chats regarding issue resolutions and the team members

involved is still a manual process.

Despite the advancements in these tools, current

solutions often fail to provide an integrated approach that

combines search, embeddings, and automated retrieval-

based recommendations for alarms or incident resolution

based on historical resolutions and related chats. This paper

proposes a unified system that builds upon these

foundations by leveraging ES, kNN, and LLMs, specifically

designed for Site Reliability Engineering (SRE) workflows

to optimize MTTR reduction and give engineers a head start

in issue resolution.

4. Proposed System Architecture
The proposed system architecture aims to optimize

incident resolution within Site Reliability Engineering

(SRE) using advanced data processing and retrieval

methodologies. For the sake of understanding, only high-

severity or critical [18] alarms are targeted, but

implementers are free to choose multiple or all categories of

alarms. The architecture has the following major

components:

• Batch (Seeding [19]) System - One-time or on-demand

batch system which can populate the ElasticSearch

indices with existing alarms and their features,

resolution chats or texts, and their embeddings

corresponding to each of the past high severity alarms.

• Active System - the automation of identifying and

guiding based on past resolutions for the current alarm

in the system. This core part provides run-time

interaction with existing ES indices, storing the

historical occurrences, alarm features, and chat

resolution text with associated embeddings.

• Bot/Agent [20] [21]- Not a core component for the

system, but it needs to interact with the system once an

alarm is queried or analyzed.

• LLM Processor - This can be on-prem [22] or a third-

party implementation of a Large Language Model like

GPT-4 [23], Mistral [24], Llama [25] that can respond

to user queries from a set of context text.

Fig. 1 Batch (Seeding) System Components Within System Boundary

Alarm Processor

Batch Coordinator

ES Processor

Elasticsearch with KNN

Alarm Resolution

Processor

Historic/Active Critical Alarm DB Historic Resolution Chat/Text DB

Timed/Manual trigger

Alarm Resolution Reconciler

System Boundary

System Boundary

Govind Singh Rawat / IJCTT, 73(3), 125-132, 2025

128

4.1. Batch (Seed) System

This system includes a batch pipeline capable of

accessing existing data sources for alarms and

corresponding resolution chats or text. It assumes that such

a database exists for past alarms and resolution

communications. For instance, high-severity alarm details

and their attributes may be sourced from tools like Datadog,

Splunk, or Prometheus.

Resolution chats containing event timelines, active

participants, and actions taken, can be retrieved from

platforms like Slack Group or Microsoft Teams. This

implementation can function as a standalone solution

dedicated to batch data processing or share components with

the Active System described later. For simplicity, the batch

system is treated as a separate entity, as depicted in Figure

1.

The main components of the batch system in Figure 1 are:

4.1.1. Batch Coordinator

The entry point to the batch system, triggered either

manually or by a timed schedule. Its primary responsibilities

include initiating batch processing, managing data flow

between subcomponents, and reporting completion to the

external system that triggered the process.

4.1.2. Alarm Resolution Processor

Retrieves historical alarm resolution chat data from the

database and extracts key details such as participants, start

and end times, fix summary, associated alarm, and its

identifier. It then returns the collected and generated

information to the Alarm Resolution Reconciler.

4.1.3. Alarm Processor

Upon receiving an alarm ID from the Alarm Resolution

Reconciler, it looks up the corresponding alarm and extracts

relevant properties, such as alarm start time, on-call

engineer, acknowledgement time, resolution time, and alarm

content.

4.1.4. Alarm Resolution Reconciler

Assigns a unique identifier to the alarm and its

corresponding resolution text, ensuring they can be saved

uniquely in the ElasticSearch (ES) index [26]. The

generated document [27] includes embeddings created from

both the chat text and alarm data and the original alarm ID,

chat group ID, and other properties that uniquely link the

alarm to the chat interaction. Once the Batch Coordinator

receives the document, it is passed to the ES processor for

storage in the specified index.

4.1.5. ES Processor

Connects to ElasticSearch and stores the documents in

the relevant ES index. These documents also include the

associated embeddings, which can later be retrieved using k-

NN search.

4.2. Active System

Certain components of the Active System overlap with

those of the Batch (Seed) System. For instance, the ES

Processor and the Alarm Processor perform functions

similar to those in the Batch System. For clarity, figure 2

includes them as part of the Active System. Implementers

have the option to design these components for reuse or

keep them separate, provided the same Elasticsearch

instance is used by both the Batch and Active Systems’ ES

Processors for k-nn search. The Active System is designed

around retrieving relevant incident information, with the

Active Coordinator ensuring seamless interaction between

system components. The LLM Processor is crucial in

providing engineers with actionable insights from historical

issue data. This data is processed by the backend LLM

implementation, which then generates interactions. Both the

LLM and Agent/Bot are positioned at the system boundaries

by design, indicating that these components can either be

developed in-house or use an existing external solution to

meet system objectives.

The Active System components shown in Figure 2 are

outlined below:

4.2.1. Agent/Bot

This component acts as the interface between the issue

communication chat group and the Active System.

Depending on the requirements, it can be an in-house

solution that connects the chat application with the Active

System and triggers the Active Coordinator with

information about the active alarm and chat group. Although

it is not the main focus of this discussion, the Agent/Bot

could be extended to automate tasks beyond just serving as

an interface to the Active System.

4.2.2. Alarm Processor

Upon receiving an alarm ID from the Active

Coordinator, this component retrieves the associated alarm

and extracts key details such as alarm start time, on-call

engineer, acknowledgement time, resolution time, and alarm

content.

4.2.3. ES Processor

This component connects to ElasticSearch and performs

a k-NN search to retrieve related historical documents.

4.2.4. Active Coordinator

As the central component of the Active System, the

Active Coordinator serves as the entry point. The Agent/Bot

informs the coordinator when a new chat group is opened

for a specific alarm ID and provides alarm-related details.

The coordinator then calls the Alarm Processor to obtain

alarm details and passes them to the ES Processor. The ES

Processor returns the k nearest neighbors of the current

alarm to the coordinator, forwarding the current alarm and

historical information to the LLM Processor.

Govind Singh Rawat / IJCTT, 73(3), 125-132, 2025

129

Fig. 2 Active system components with system boundary

4.2.5. LLM Processor

The LLM Processor receives the current alarm details

and associated historical data from the coordinator. It

triggers the LLM with a seed prompt [28] and receives an

initial response, which it sends back to the coordinator. The

coordinator then passes it to the agent/bot. This initial

response contains predefined information the SRE team may

want to address immediately. The LLM Processor waits for

future interactions within the context of the ongoing

conversation.

5. Experimental Setup
The setup uses Elasticsearch 8.17 with kNN search. It

has an index containing 1,000 database-related issues,

alarms, and their resolutions. GPT-4 serves as the backend

of the LLM processor. For issue resolution and conversation

processing, a Slack app acts as an agent/bot. A set of 50

critical alarms is randomly selected from database-related

issues and assigned to two teams of entry-level engineers,

all with the same level of work experience and familiarity

with the database-related issue. An A/B test [29] is

conducted, where one group of engineers resolves the

alarms using the proposed system while the second group

resolves them without the system. The following metrics are

tracked for both teams, with and without the system’s

assistance:

• MTTR (Mean Time to Resolution)

• Incident escalation rate

• Number of additional teams engaged to resolve the

issue

• Accuracy of retrieved relevant past incidents

• Engineer satisfaction score

6. Performance Evaluation
The following were the results of measuring the

proposed A/B test metrics, where manual resolution was

taken as the baseline, and Setup Assisted Resolution was

measured for the team.

LLM

Alarm Processor

Active Coordinator

ES Processor

Elasticsearch with KNN

Alarm generated

LLM Processor

Chat Group Started

Agent/Bot System Boundary

System

Boundary

Elasticsearch with KNN

Historic/Active Critical Alarm

DB

Govind Singh Rawat / IJCTT, 73(3), 125-132, 2025

130

Table 1. Mean time to resolution

((Average time taken to resolve an alarm from detection to closure))

 MTTR (minutes) % Improvement

Manual 85 minutes -

Setup Assisted 47 minutes 44.7% faster

Table 2. Incident escalation rate

((Percentage of alarms requiring escalation to senior engineers or external

teams))

% of Incidents

Escalated
 % Reduction

Manual 31% Values

Setup Assisted 18%
42% fewer

escalations

Table 3. Number of additional teams involved

((Average number of teams consulted during incident resolution))

Avg. Teams

Involved Per

Incident

% Reduction

Manual 2.8 teams -

Setup Assisted 1.5 teams
46.4% fewer

teams

Table 4. Retrieval accuracy of relevant past incidents

((Percentage of retrieved past alarm and alarm resolutions that were

relevant to current alarm))

Top-K retrieved incidents (k=3) % Relevance Score

Manual 64%

Setup Assisted 88%

Table 5. Engineer satisfaction score

((Engineer feedback on setup’s usefulness for troubleshooting (Sacle 1-5)

 Avg. Satisfaction Score

Manual 3.2 / 5

Setup Assisted 4.3/5

6.1. Observations on Performance Evaluations

6.1.1. MTTR improvements

Setup-assisted troubleshooting reduced MTTR by

~44.7% due to rapid retrieval of past resolutions and guided

suggestions. Engineers spent less time manually searching

for solutions in logs and documentation.

6.1.2. Incident Escalation Rate

42% reduction in escalations, indicating that engineers

resolved more issues independently with the setup’s

assistance. The setup provided better root-cause analysis,

reducing the need for external expertise.

6.1.3 Number of Additional Teams Involved

Engineers using the setup needed fewer team

interactions to resolve alarms, leading to less cross-team

dependency. The system provided actionable insights that

reduced back-and-forth communication with other teams.

6.1.4 Retrieval Accuracy of Relevant Past Incidents

The setup retrieved relevant past incidents with 88%

accuracy, significantly outperforming manual searches.

Higher relevance means engineers spent less time filtering

through unrelated past cases.

6.1.5. Engineer Satisfaction Score

Engineers found the system highly effective in reducing

time spent on resolution tasks, specifically searching

relevant logs. Feedback highlighted that setup explanations

improved troubleshooting confidence.

6.2. Summary of Performance Evaluation

Metric Baseline

(manual)

Setup

Assisted

Improvement

MTTR 85 min 47 min 44.7% faster

Escalation

Rate

31% 18% 42% fewer

escalations

Avg.

teams

involved

2.8 teams 1.5 teams 46.4% fewer

teams

Past

Incident

Retrieval

Accuracy

64% 88% 37.5% Higher

Accuracy

Engineer

Satisfactio

n Score

64% 86% 25% Improved

Satisfaction

6.3 Unique Advantages of Proposed Approach
While existing techniques rely on predefined queries,

manual log analysis, and reactive troubleshooting, the

proposed system integrates Elasticsearch, Large Language

Models (LLMs), and k-nearest neighbor (kNN) search to

provide intelligent, automated, and context-aware incident

resolution. This section discusses how and why the

proposed approach yields better results than conventional

and state-of-the-art techniques. Traditional incident

response systems depend on manual log correlation and

predefined query-based investigations, often leading to

prolonged resolution times. The proposed system

significantly reduces MTTR by utilizing Elasticsearch to

rapidly retrieve relevant past resolutions. Leveraging kNN

search to find similar historical incidents aids engineers in

faster diagnosis and integrates LLMs to interpret alarm

contexts and suggest the most relevant resolution, which

fast-tracks problem identification.

6.3.1. Experimental Validation

A/B testing showed that engineers using the proposed

system resolved alarms 44.7% faster than those relying on

Govind Singh Rawat / IJCTT, 73(3), 125-132, 2025

131

conventional methods, with a measurable decrease in

MTTR. Existing tools such as Datadog, Splunk, and

Prometheus primarily focus on real-time monitoring and

alerting but lack intelligent troubleshooting capabilities,

specifically in the following areas:

• Contextual Understanding: LLMs analyze alarm

descriptions to extract key features, reducing

misdiagnoses.

• Automated Historical Referencing: Unlike traditional

systems, which do not efficiently retain past resolution

knowledge, the proposed system continually learns

from historical data to refine its recommendations.

5. Conclusion
The LLM-powered alarm resolution system

significantly enhances incident management efficiency

within Site Reliability Engineering (SRE) by integrating

historical alarm data, retrieval-augmented search, and

generative AI-driven recommendations. The system

demonstrated notable improvements across key operational

metrics through a structured evaluation, including a 44.7%

reduction in Mean Time to Resolution (MTTR), a 42% drop

in incident escalations, and a 46.4% decrease in cross-team

dependencies. These gains highlight the system’s ability to

streamline troubleshooting workflows, ensuring that

engineers can resolve high-severity alarms with greater

speed and accuracy.

By leveraging ElasticSearch for k-NN retrieval, an

Active System for real-time interaction, and an LLM

Processor for intelligent guidance, the architecture

minimizes manual effort while maximizing contextual

awareness. The Batch (Seed) System further strengthens the

solution by pre-populating historical alarm-resolution data,

ensuring the retrieval process remains robust and relevant.

Additionally, incorporating a Bot/Agent interface facilitates

seamless integration with existing communication platforms

like Slack and Microsoft Teams, improving accessibility for

engineers in real time.

Overall, the system reduces operational overhead,

enhances knowledge retention, and enables a data-driven

approach to incident resolution. Future enhancements may

include expanding the dataset beyond high-severity alarms,

improving multi-turn interactions with the LLM, and

integrating real-time anomaly detection mechanisms to

refine response strategies further. The observed

improvements in resolution efficiency, reduced escalation

rates, and engineer satisfaction affirm the viability of this

approach in modern SRE workflows.

References

[1] What is Elasticsearch?, Elastic. [Online]. Available: https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro-

what-is-es.html/

[2] Wayne Xin Zhao et al., “A Survey of Large Language Models,” arXiv, pp. 1-144, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] k-Nearest Neighbor (kNN) Search, Elastic. [Online]. Available: https://www.elastic.co/guide/en/elasticsearch/reference/8.0/knn-

search.html

[4] Betsy Beyer et al., Site Reliability Engineering: How Google Runs Production Systems, O'Reilly Media, pp. 1-552, 2016. [Google

Scholar] [Publisher Link]

[5] Ollie Cook et al., On-Call, SRE Workbook Chapter 8, 2016. [Publisher Link]

[6] What is Meant Time to Resolution?, A Guide to Incident Metrics, Instatus. [Online]. Available: https://instatus.com/blog/mttr/

[7] Mohan Sitaram, Mastering the Art of Troubleshooting Large-Scale Distributed Systems, DevOps.Com, 2024. [Online]. Available:

https://devops.com/mastering-the-art-of-troubleshooting-large-scale-distributed-systems

[8] Max Landauer et al., “Deep Learning for Anomaly Detection in Log Data: A Survey,” Machine Learning with Applications, vol. 12, pp.

1-19, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[9] Syed Abdul, LogBERT: Log File Anomaly Detection Using BERT, 2022. [Online]. Available: https://medium.com/infinstor/logbert-

log-file-anomaly-detection-using-bert-an-explainer-db20bfd2f91f/

[10] Salam Allawi Hussein, and Sándor R. Répás, “Anomaly Detection in Log Files Based on Machine Learning Techniques,” Journal of

Electrical Systems, vol. 20, no. 3s, pp. 1299-1311, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] Uday Kamath et al., Large Language Models: A Deep Dive, Bridging Theory and Practice, Springer, pp. 1-472, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

[12] Guilherme O. Campos et al., “On the Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical Study,” Data

Mining and Knowledge Discovery, vol. 30, no. 4, pp. 891-927, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[13] Real-Time Cloud Monitoring, Datadog. [Online]. Available: https://www.datadoghq.com/

[14] Enterprise Logging and Alerting, Splunk. [Online]. Available: https://www.splunk.com/

[15] Open-Source Metrics and Monitoring, Prometheus. [Online]. Available: https://prometheus.io/

[16] Slack Software. [Online]. Available: https://slack.com/

[17] Microsoft Teams Software. [Online]. Available: https://www.microsoft.com/en-us/microsoft-teams/group-chat-software/

https://doi.org/10.48550/arXiv.2303.18223
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Large+Language+Models&btnG=
https://arxiv.org/abs/2303.18223
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Site+Reliability+Engineering%3A+How+Google+Runs+Production+Systems&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Site+Reliability+Engineering%3A+How+Google+Runs+Production+Systems&btnG=
https://www.google.co.in/books/edition/Site_Reliability_Engineering/_4rPCwAAQBAJ?hl=en&gbpv=0
https://sre.google/workbook/on-call/
https://doi.org/10.1016/j.mlwa.2023.100470
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning+for+Anomaly+Detection+in+Log+Data%3A+A+Survey++&btnG=
https://www.sciencedirect.com/science/article/pii/S2666827023000233
https://doi.org/10.52783/jes.1505
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+in+Log+Files+Based+on+Machine+Learning+Techniques++&btnG=
https://journal.esrgroups.org/jes/article/view/1505
https://doi.org/10.1007/978-3-031-65647-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Large+Language+Models%3A+A+Deep+Dive&btnG=
https://link.springer.com/book/10.1007/978-3-031-65647-7
https://doi.org/10.1007/s10618-015-0444-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Evaluation+of+Unsupervised+Outlier+Detection%3A+Measures%2C+Datasets%2C+and+an+Empirical+Study&btnG=
https://link.springer.com/article/10.1007/s10618-015-0444-8

Govind Singh Rawat / IJCTT, 73(3), 125-132, 2025

132

[18] Bill Hollifield, and Eddie Habib, The Alarm Management Handbook: A Comprehensive Guide, PAS, pp. 1-261, 2010. [Google Scholar]

[Publisher Link]

[19] Seeding, Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Seeding_(computing)

[20] What are Bots?, Slack Api. [Online]. Available: https://api.slack.com/legacy/enabling-bot-users/

[21] Bot Overview, MicroSoft Team. [Online]. Available:

https://learn.microsoft.com/en-us/microsoftteams/platform/bots/overview?utm_source=chatgpt.com

[22] Thomas Erl, Ricardo Puttini, and Zaigham Mahmood, Cloud Computing: Concepts, Technology & Architecture, pp. 1-528, 2013.

[Google Scholar] [Publisher Link]

[23] OpenAI, GPT-4 Technical Report, 2023. [Online]. Available: https://openai.com/research/gpt-4

[24] Mistral AI, Mistral 7B: A Dense, Efficient, Open-Source Language Model, 2023. [Online]. Available: https://mistral.ai/

[25] Hugo Touvron et al., “LLaMA: Open and Efficient Foundation Language Models,” arXiv, pp. 1-27, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[26] David Brimley, What is an Elasticsearch Index?, Elastic, 2023. [Online]. Available: https://www.elastic.co/blog/what-is-an-

elasticsearch-index

[27] Index, Documents and Fields, Elastic. [Online]. Available: https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-

indices.html/

[28] XiPeng Qiu et al., “Pre-Trained Models for Natural Language Processing: A Survey,” Science China Technological Sciences, vol. 63,

no. 1872-1897, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[29] Ron Kohavi, Diane Tang, and Ya Xu, Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing, Cambridge

University Press, 2020. [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Alarm+Management%3A+A+Comprehensive+Guide&btnG=
https://www.google.co.in/books/edition/The_Alarm_Management_Handbook/0e6TbwAACAAJ?hl=en
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+Computing%3A+Concepts%2C+Technology+%26+Architecture&btnG=
https://www.google.co.in/books/edition/Cloud_Computing/czCiJ6sbhpAC?hl=en&gbpv=0&bsq=Cloud%20Computing:%20Concepts,%20Technology%20%26%20Architecture
https://doi.org/10.48550/arXiv.2302.13971
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LLaMA%3A+Open+and+Efficient+Foundation+Language+Models&btnG=
https://arxiv.org/abs/2302.13971
https://doi.org/10.1007/s11431-020-1647-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pre-trained+Models+for+Natural+Language+Processing%3A+A+Survey&btnG=
https://link.springer.com/article/10.1007/s11431-020-1647-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Trustworthy+Online+Controlled+Experiments%3A+A+Practical+Guide+to+A%2FB+Testing&btnG=
https://www.google.co.in/books/edition/Trustworthy_Online_Controlled_Experiment/Gu-CEAAAQBAJ?hl=en&gbpv=0

