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Abstract - Enhancing incident resolution is a key focus in modern Site Reliability Engineering (SRE). This paper presents a 

system that combines ElasticSearch (ES) with Large Language Models (LLMs) to reduce Mean Time to Resolution (MTTR). 

By embedding historical alarm data, extracting essential features, and leveraging k-nearest neighbors (kNN) search, the 

system efficiently links past incidents, retrieves relevant resolutions, and improves operational response through LLM 

interaction. This continuous feedback loop enhances incident response speed and facilitates faster incident resolution.  

Keywords - ElasticSearch (ES), Incident mitigation, K-nearest neighbors search, Mean Time to Resolution, Site Reliability 

Engineering.

1. Introduction 
In large-scale distributed systems, swift and accurate 

incident response is critical to minimizing downtime and 

ensuring system reliability. Traditional monitoring solutions 

generate high-severity alarms to notify engineers of 

potential failures; however, diagnosing and resolving these 

alarms remains a significant challenge. Current incident 

response systems rely heavily on manual investigation, 

leading to prolonged resolution times and increased 

operational costs. 

 
Existing solutions, including widely used observability 

tools like Datadog, Splunk, and Prometheus, offer real-time 

monitoring and alerting but lack key capabilities essential 

for efficient troubleshooting. These tools primarily depend 

on predefined queries, dashboard-based investigations, or 

manual correlation of logs, all of which can be time-

consuming. Moreover, they do not effectively leverage 

historical resolutions or contextual insights to aid engineers 

in incident response. 

 
A major research gap lies in integrating intelligent 

search mechanisms, contextual retrieval, and automated 

recommendations for incident resolution. While previous 

studies have explored log-based anomaly detection and 

knowledge graph-enhanced troubleshooting, they have not 

sufficiently addressed the need for a unified system that 

combines historical insights, efficient search capabilities, 

and AI-driven contextual guidance. 

This paper proposes an intelligent incident resolution 

system that integrates Elasticsearch [1] for high-speed log 

retrieval, Large Language Models (LLMs) [2] for contextual 

troubleshooting insights, and k-nearest neighbor (kNN) 

search [3] for historical incident pattern recognition. By 

embedding these technologies within Site Reliability 

Engineering (SRE) [4] on-call  [5]  workflows, the system 

aims to enhance incident response efficiency, reduce MTTR 

[6], and provide engineers with immediate access to relevant 

historical resolutions. This approach bridges the gap in 

incident management solutions by offering a proactive, 

context-aware resolution framework tailored to large-scale 

distributed environments. 
 

2. Problem Statement 
Traditional incident response systems in large-scale 

distributed environments [7] often rely on basic monitoring 

tools and reactive maintenance, leading to prolonged 

downtime and degraded system reliability. Key challenges 

in incident management for Site Reliability Engineers 

include: 

• Lack of efficient real-time diagnostic capabilities. 

• Insufficient contextual information to quickly resolve 

alarms. 

• High Mean Time to Resolution (MTTR) due to manual 

intervention and inefficient search. 

• Limited automation in identifying and responding to 

related incidents 

• Difficulty in learning from historical incidents to 

predict and prevent recurring issues. 

http://www.internationaljournalssrg.org/
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A modern incident resolution system should address 

these challenges by leveraging efficient search capabilities, 

proactive failure detection, and automated remediation 

processes. Integrating technologies like ElasticSearch (ES) 

for fast search, k-nearest neighbor (kNN) search for 

historical context matches, and LLM for contextual insights 

can significantly enhance the speed of incident resolution, 

reducing MTTR, promoting system reliability and efficiency 

during the issue resolution process. 

3. Literature Review 
Efficient alarm and incident management in distributed 

systems is critical to maintaining system reliability and 

minimizing downtime. As modern infrastructures grow 

increasingly complex, organizations rely on automated 

monitoring, anomaly detection, and intelligent 

troubleshooting tools to manage system failures. However, 

existing approaches still present gaps in providing seamless, 

context-aware incident resolution. This review explores 

various advancements in anomaly detection, knowledge 

graph-enhanced troubleshooting, log retrieval, and the 

integration of Large Language Models (LLMs) to improve 

incident management workflows. 

Organizations have relied on rule-based alerting 

systems and manual log analysis to detect and address 

incidents. These traditional approaches suffer from high 

false positive rates and lack scalability when dealing with 

distributed cloud environments, which generate 

overwhelming amounts. Previous research on log-based 

anomaly detection [8] has highlighted the advantages of 

applying machine learning models to predict failures. 

Traditional ML methods, such as decision trees and support 

vector machines (SVMs), have demonstrated moderate 

success. However, research on k-nearest neighbor (kNN) 

search in anomaly detection highlights its ability to 

recognize recurring failure patterns, reducing engineers’ 

time diagnosing similar issues. 

Structured data representation through knowledge 

graphs has proven effective in improving diagnostic 

efficiency [9]. Unlike traditional lookup-based systems, 

knowledge graphs encode relationships between system 

components, past incidents, and resolution steps to enable 

context-aware recommendations. By integrating domain-

specific knowledge, these graphs can enhance incident 

resolution strategies beyond purely ML-driven approaches. 

This paper talks about how existing resolution knowledge 

can be combined with kNN search to provide faster 

correlations to solve the issues promptly. 

Incident resolution workflows require efficient log 

indexing and retrieval mechanisms to extract relevant 

historical data. The use of ElasticSearch for log indexing 

and retrieval [10] has emerged as a scalable solution for 

querying large datasets. While ElasticSearch allows for 

keyword-based searches, its reliance on manual query 

construction can slow down the incident resolution process. 

Recent approaches propose embedding-based retrieval 

techniques, such as vector search and semantic similarity 

models, to enhance search relevance. This paper builds on 

these advancements by integrating kNN-based retrieval into 

ElasticSearch, reducing the need for manual searches and 

enabling engineers to retrieve past solutions based on 

semantic similarity rather than keyword matches. 

Recent developments in Retrieval-Augmented 

Generation (RAG) demonstrate how combining Large 

Language Models [11] with document retrieval can offer 

context-sensitive troubleshooting assistance. However, 

challenges such as hallucination risks, data freshness, and 

model interpretability need to be addressed to fully integrate 

LLMs into critical incident response workflows. This paper 

proposes a hybrid approach that leverages RAG, 

ElasticSearch, and kNN retrieval of historical resolutions, 

ensuring highly relevant, real-time troubleshooting 

assistance while minimizing AI-related risks. 

Based on some of the prevalent observability, alarming, 

and monitoring tools like Datadog [13], Splunk [14], and 

Prometheus [15], they still lack several essential 

capabilities:  

Datadog offers real-time monitoring and alerting with 

integrations across cloud platforms, allowing engineers to 

detect anomalies proactively. While it supports event 

correlation, it lacks embedding-based retrieval to provide 

engineers with past solutions for similar alarms, which is 

catered to in this paper. 

Splunk is a popular tool for log management and 

analytics, offering real-time insights into system behavior. 

However, its reliance on manual search queries and 

dashboard-based investigations can delay incident 

resolution. This paper utilizes kNN-based retrieval in 

ElasticSearch, reducing the need for manual searches and 

enhancing response efficiency.  

Prometheus is an open-source monitoring system 

designed for time-series data collection and alerting. While 

effective in monitoring system health, it lacks context-aware 

troubleshooting capabilities and does not store historical 

solutions for similar alarms, which is being addressed in this 

paper. 

The proposed system addresses the above gaps by 

integrating Large Language Models (LLMs) to offer 

structured troubleshooting recommendations. Incident 

response teams typically rely on communication channels to 

track details and steps taken by engineering teams. Some 
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teams prefer using live chat platforms like Slack [16] or 

Microsoft Teams [17]. However, tracing back previous 

chats regarding issue resolutions and the team members 

involved is still a manual process.  

Despite the advancements in these tools, current 

solutions often fail to provide an integrated approach that 

combines search, embeddings, and automated retrieval-

based recommendations for alarms or incident resolution 

based on historical resolutions and related chats. This paper 

proposes a unified system that builds upon these 

foundations by leveraging ES, kNN, and LLMs, specifically 

designed for Site Reliability Engineering (SRE) workflows 

to optimize MTTR reduction and give engineers a head start 

in issue resolution. 

4. Proposed System Architecture 
The proposed system architecture aims to optimize 

incident resolution within Site Reliability Engineering 

(SRE) using advanced data processing and retrieval 

methodologies. For the sake of understanding, only high-

severity or critical [18]  alarms are targeted, but 

implementers are free to choose multiple or all categories of 

alarms. The architecture has the following major 

components: 

• Batch (Seeding [19]) System - One-time or on-demand 

batch system which can populate the ElasticSearch 

indices with existing alarms and their features, 

resolution chats or texts, and their embeddings 

corresponding to each of the past high severity alarms. 

• Active  System - the automation of identifying and 

guiding based on past resolutions for the current alarm 

in the system. This core part provides run-time 

interaction with existing ES indices, storing the 

historical occurrences, alarm features, and chat 

resolution text with associated embeddings. 

• Bot/Agent [20] [21]- Not a core component for the 

system, but it needs to interact with the system once an 

alarm is queried or analyzed. 

• LLM Processor - This can be on-prem [22] or a third-

party implementation of a Large Language Model like 

GPT-4 [23], Mistral [24], Llama [25] that can respond 

to user queries from a set of context text. 

 

 

Fig. 1 Batch (Seeding) System Components Within System Boundary 

Alarm Processor 
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Elasticsearch with KNN 
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4.1. Batch (Seed) System 

This system includes a batch pipeline capable of 

accessing existing data sources for alarms and 

corresponding resolution chats or text. It assumes that such 

a database exists for past alarms and resolution 

communications. For instance, high-severity alarm details 

and their attributes may be sourced from tools like Datadog, 

Splunk, or Prometheus.  

 

Resolution chats containing event timelines, active 

participants, and actions taken, can be retrieved from 

platforms like Slack Group or Microsoft Teams. This 

implementation can function as a standalone solution 

dedicated to batch data processing or share components with 

the Active System described later. For simplicity, the batch 

system is treated as a separate entity, as depicted in Figure 

1. 

The main components of the batch system in Figure 1 are: 

4.1.1. Batch Coordinator 

The entry point to the batch system, triggered either 

manually or by a timed schedule. Its primary responsibilities 

include initiating batch processing, managing data flow 

between subcomponents, and reporting completion to the 

external system that triggered the process. 

 

4.1.2. Alarm Resolution Processor 

Retrieves historical alarm resolution chat data from the 

database and extracts key details such as participants, start 

and end times, fix summary, associated alarm, and its 

identifier. It then returns the collected and generated 

information to the Alarm Resolution Reconciler. 

 

4.1.3. Alarm Processor 

Upon receiving an alarm ID from the Alarm Resolution 

Reconciler, it looks up the corresponding alarm and extracts 

relevant properties, such as alarm start time, on-call 

engineer, acknowledgement time, resolution time, and alarm 

content. 

 

4.1.4. Alarm Resolution Reconciler 

Assigns a unique identifier to the alarm and its 

corresponding resolution text, ensuring they can be saved 

uniquely in the ElasticSearch (ES) index [26]. The 

generated document [27] includes embeddings created from 

both the chat text and alarm data and the original alarm ID, 

chat group ID, and other properties that uniquely link the 

alarm to the chat interaction. Once the Batch Coordinator 

receives the document, it is passed to the ES processor for 

storage in the specified index. 
 

4.1.5. ES Processor 

Connects to ElasticSearch and stores the documents in 

the relevant ES index. These documents also include the 

associated embeddings, which can later be retrieved using k-

NN search. 

4.2. Active System 

Certain components of the Active System overlap with 

those of the Batch (Seed) System. For instance, the ES 

Processor and the Alarm Processor perform functions 

similar to those in the Batch System. For clarity, figure 2 

includes them as part of the Active System. Implementers 

have the option to design these components for reuse or 

keep them separate, provided the same Elasticsearch 

instance is used by both the Batch and Active Systems’ ES 

Processors for k-nn search. The Active System is designed 

around retrieving relevant incident information, with the 

Active Coordinator ensuring seamless interaction between 

system components. The LLM Processor is crucial in 

providing engineers with actionable insights from historical 

issue data. This data is processed by the backend LLM 

implementation, which then generates interactions. Both the 

LLM and Agent/Bot are positioned at the system boundaries 

by design, indicating that these components can either be 

developed in-house or use an existing external solution to 

meet system objectives. 
 

The Active System components shown in Figure 2 are 

outlined below: 

4.2.1. Agent/Bot 

This component acts as the interface between the issue 

communication chat group and the Active System. 

Depending on the requirements, it can be an in-house 

solution that connects the chat application with the Active 

System and triggers the Active Coordinator with 

information about the active alarm and chat group. Although 

it is not the main focus of this discussion, the Agent/Bot 

could be extended to automate tasks beyond just serving as 

an interface to the Active System. 

 

4.2.2. Alarm Processor 

Upon receiving an alarm ID from the Active 

Coordinator, this component retrieves the associated alarm 

and extracts key details such as alarm start time, on-call 

engineer, acknowledgement time, resolution time, and alarm 

content. 

 

4.2.3. ES Processor 

This component connects to ElasticSearch and performs 

a k-NN search to retrieve related historical documents. 

 

4.2.4. Active Coordinator 

As the central component of the Active System, the 

Active Coordinator serves as the entry point. The Agent/Bot 

informs the coordinator when a new chat group is opened 

for a specific alarm ID and provides alarm-related details. 

The coordinator then calls the Alarm Processor to obtain 

alarm details and passes them to the ES Processor. The ES 

Processor returns the k nearest neighbors of the current 

alarm to the coordinator, forwarding the current alarm and 

historical information to the LLM Processor. 
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Fig. 2 Active system components with system boundary 
 

4.2.5. LLM Processor 

The LLM Processor receives the current alarm details 

and associated historical data from the coordinator. It 

triggers the LLM with a seed prompt [28] and receives an 

initial response, which it sends back to the coordinator. The 

coordinator then passes it to the agent/bot. This initial 

response contains predefined information the SRE team may 

want to address immediately. The LLM Processor waits for 

future interactions within the context of the ongoing 

conversation. 

 

5. Experimental Setup 
The setup uses Elasticsearch 8.17 with kNN search. It 

has an index containing 1,000 database-related issues, 

alarms, and their resolutions. GPT-4 serves as the backend 

of the LLM processor. For issue resolution and conversation 

processing, a Slack app acts as an agent/bot. A set of 50 

critical alarms is randomly selected from database-related 

issues and assigned to two teams of entry-level engineers, 

all with the same level of work experience and familiarity 

with the database-related issue. An A/B test [29] is 

conducted, where one group of engineers resolves the 

alarms using the proposed system while the second group 

resolves them without the system. The following metrics are 

tracked for both teams, with and without the system’s 

assistance: 

• MTTR (Mean Time to Resolution) 

• Incident escalation rate 

• Number of additional teams engaged to resolve the 

issue 

• Accuracy of retrieved relevant past incidents 

• Engineer satisfaction score 

6. Performance Evaluation 
The following were the results of measuring the 

proposed A/B test metrics, where manual resolution was 

taken as the baseline, and Setup Assisted Resolution was 

measured for the team.  
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Table 1. Mean time to resolution 

((Average time taken to resolve an alarm from detection to closure))  

 MTTR (minutes)  % Improvement 

Manual 85 minutes - 

Setup Assisted 47 minutes 44.7% faster 
 

Table 2. Incident escalation rate 

((Percentage of alarms requiring escalation to senior engineers or external 

teams))  

 
% of Incidents 

Escalated 
 % Reduction 

Manual 31% Values 

Setup Assisted 18% 
42% fewer 

escalations  
 

Table 3. Number of additional teams involved 

((Average number of teams consulted during incident resolution))  

 

Avg. Teams 

Involved Per 

Incident 

% Reduction 

Manual 2.8 teams - 

Setup Assisted 1.5 teams 
46.4% fewer 

teams 
 

Table 4. Retrieval accuracy of relevant past incidents 

((Percentage of retrieved past alarm and alarm resolutions that were 

relevant to current alarm))  

Top-K retrieved incidents (k=3) % Relevance Score 

Manual 64% 

Setup Assisted 88% 
 

Table 5. Engineer satisfaction score 

((Engineer feedback on setup’s usefulness for troubleshooting (Sacle 1-5) 

 Avg. Satisfaction Score 

Manual 3.2 / 5 

Setup Assisted 4.3/5 
 

6.1. Observations on Performance Evaluations 

6.1.1. MTTR improvements 

Setup-assisted troubleshooting reduced MTTR by 

~44.7% due to rapid retrieval of past resolutions and guided 

suggestions. Engineers spent less time manually searching 

for solutions in logs and documentation. 

 

6.1.2. Incident Escalation Rate 

42% reduction in escalations, indicating that engineers 

resolved more issues independently with the setup’s 

assistance. The setup provided better root-cause analysis, 

reducing the need for external expertise. 

 
6.1.3 Number of Additional Teams Involved 

Engineers using the setup needed fewer team 

interactions to resolve alarms, leading to less cross-team 

dependency. The system provided actionable insights that 

reduced back-and-forth communication with other teams. 

6.1.4 Retrieval Accuracy of Relevant Past Incidents 

The setup retrieved relevant past incidents with 88% 

accuracy, significantly outperforming manual searches. 

Higher relevance means engineers spent less time filtering 

through unrelated past cases. 

 
6.1.5. Engineer Satisfaction Score 

Engineers found the system highly effective in reducing 

time spent on resolution tasks, specifically searching 

relevant logs. Feedback highlighted that setup explanations 

improved troubleshooting confidence. 

 
6.2. Summary of Performance Evaluation 

Metric Baseline 

(manual) 

Setup 

Assisted 

Improvement 

MTTR 85 min 47 min 44.7% faster 

Escalation

Rate 

31% 18% 42% fewer 

escalations 

Avg. 

teams 

involved 

2.8 teams 1.5 teams 46.4% fewer 

teams 

Past 

Incident 

Retrieval 

Accuracy 

64% 88% 37.5% Higher 

Accuracy 

Engineer 

Satisfactio

n Score 

64% 86% 25% Improved 

Satisfaction 

 

6.3 Unique Advantages of Proposed Approach 
While existing techniques rely on predefined queries, 

manual log analysis, and reactive troubleshooting, the 

proposed system integrates Elasticsearch, Large Language 

Models (LLMs), and k-nearest neighbor (kNN) search to 

provide intelligent, automated, and context-aware incident 

resolution. This section discusses how and why the 

proposed approach yields better results than conventional 

and state-of-the-art techniques. Traditional incident 

response systems depend on manual log correlation and 

predefined query-based investigations, often leading to 

prolonged resolution times. The proposed system 

significantly reduces MTTR by utilizing Elasticsearch to 

rapidly retrieve relevant past resolutions. Leveraging kNN 

search to find similar historical incidents aids engineers in 

faster diagnosis and integrates LLMs to interpret alarm 

contexts and suggest the most relevant resolution, which 

fast-tracks problem identification. 

6.3.1. Experimental Validation 

A/B testing showed that engineers using the proposed 

system resolved alarms 44.7% faster than those relying on 
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conventional methods, with a measurable decrease in 

MTTR. Existing tools such as Datadog, Splunk, and 

Prometheus primarily focus on real-time monitoring and 

alerting but lack intelligent troubleshooting capabilities, 

specifically in the following areas: 

• Contextual Understanding: LLMs analyze alarm 

descriptions to extract key features, reducing 

misdiagnoses. 

• Automated Historical Referencing: Unlike traditional 

systems, which do not efficiently retain past resolution 

knowledge, the proposed system continually learns 

from historical data to refine its recommendations. 

5. Conclusion 
The LLM-powered alarm resolution system 

significantly enhances incident management efficiency 

within Site Reliability Engineering (SRE) by integrating 

historical alarm data, retrieval-augmented search, and 

generative AI-driven recommendations. The system 

demonstrated notable improvements across key operational 

metrics through a structured evaluation, including a 44.7% 

reduction in Mean Time to Resolution (MTTR), a 42% drop 

in incident escalations, and a 46.4% decrease in cross-team 

dependencies. These gains highlight the system’s ability to 

streamline troubleshooting workflows, ensuring that 

engineers can resolve high-severity alarms with greater 

speed and accuracy. 

By leveraging ElasticSearch for k-NN retrieval, an 

Active System for real-time interaction, and an LLM 

Processor for intelligent guidance, the architecture 

minimizes manual effort while maximizing contextual 

awareness. The Batch (Seed) System further strengthens the 

solution by pre-populating historical alarm-resolution data, 

ensuring the retrieval process remains robust and relevant. 

Additionally, incorporating a Bot/Agent interface facilitates 

seamless integration with existing communication platforms 

like Slack and Microsoft Teams, improving accessibility for 

engineers in real time. 

Overall, the system reduces operational overhead, 

enhances knowledge retention, and enables a data-driven 

approach to incident resolution. Future enhancements may 

include expanding the dataset beyond high-severity alarms, 

improving multi-turn interactions with the LLM, and 

integrating real-time anomaly detection mechanisms to 

refine response strategies further. The observed 

improvements in resolution efficiency, reduced escalation 

rates, and engineer satisfaction affirm the viability of this 

approach in modern SRE workflows. 
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