
 International Journal of Computer Trends and Technology Volume 71 Issue 5, 10-14, May 2023

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V71I5P103 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Performance Tuning and Optimization of Apache

Spark Applications
Anish Ninan

Hitachi Solutions America LTD, 100 Spectrum Center Dr # 350, Irvine, CA, USA.

Received: 16 March 2023 Revised: 26 April 2023 Accepted: 09 May 2023 Published: 20 May 2023

Abstract - Apache Spark has emerged as a powerful and widely used distributed data processing engine for big data

analytics. However, achieving optimal performance in Spark applications can be challenging due to the complex nature of

distributed computing and the myriad of configuration parameters involved. This paper presents a comprehensive study of

performance tuning and optimization techniques for Apache Spark applications, with the goal of enabling users to maximize

resource utilization, minimize execution time, and improve overall application efficiency.

We begin by providing an overview of Apache Spark’s architecture, including its data structures, core components, and

execution model. This foundation allows us to explore the impact of various factors on Spark application performance, such

as data partitioning, data serialization, and caching strategies. We then discuss critical performance-related parameters,

including executor configuration, memory management, and garbage collection settings.

Next, we delve into advanced optimization techniques, such as adaptive query execution, dynamic allocation, and data

locality. We demonstrate the effectiveness of these techniques through a series of experiments and benchmarks using real-

world datasets and workloads. Additionally, we introduce tools and best practices for monitoring and profiling Spark

applications, allowing users to identify and address performance bottlenecks.

By providing a comprehensive understanding of performance tuning and optimization for Apache Spark applications,

this paper aims to empower users to harness the full potential of this powerful data processing engine, unlock new insights

from their big data workloads and most importantly, save on costs!

Keywords - Apache spark, Big data, AI, ML, Data Engineering, Performance tuning.

1. Introduction
Apache Spark has emerged as a prominent distributed

data processing engine for big data analytics, addressing

several drawbacks of the Hadoop ecosystem, such as limited

iterative processing capabilities and tight coupling of

compute and storage resources. By offering fault-tolerant,

parallelized processing capabilities and support for various

data sources and APIs, Spark enables the separation of

computing and storage, leading to improved scalability and

flexibility. However, obtaining optimal performance in

Spark applications remains challenging due to the intricate

nature of distributed computing and the numerous

configuration parameters involved. This paper presents an

in-depth study of performance tuning and optimization

techniques for Apache Spark applications, aiming to

enhance efficiency, reduce execution time, and maximize

resource utilization. By providing a detailed understanding

of these techniques, we seek to empower users to unlock the

full potential of Apache Spark and uncover valuable insights

from their big data workloads.

2. Literature Review
Several studies have investigated the impact of

different cluster configurations and resource allocation

strategies on Spark performance. For example, Cheng et al.

(2017) evaluated the effects of CPU, memory, and network

bandwidth allocation on Spark job completion time and

resource utilization. They found that over-provisioning

resources beyond the optimal level can degrade

performance due to contention and interference. Similarly,

Li et al. (2018) analyzed the performance trade-offs

between using large vs small Spark executor instances and

recommended using a combination of both for different

types of workloads.

3. What is Apache Spark?
Apache Spark is an open-source big data processing

framework designed to process large volumes of data in a

distributed and fault-tolerant manner. It was developed at

the University of California, Berkeley, and later donated to

the Apache Software Foundation, where it is now one of the

top-level Apache projects. Spark provides an interface for

programming in various languages like Scala, Python, Java,

and R.

Spark is known for its ability to process large volumes

of data quickly and efficiently, making it ideal for

processing big data workloads. It achieves this by running

computations in memory and using a distributed processing

architecture that allows it to process data in parallel across

many nodes in a cluster. Spark provides a wide range of

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Anish Ninan / IJCTT, 71(5), 10-14, 2023

11

tools and libraries, including SQL, machine learning, graph

processing, and streaming, making it a versatile platform for

big data processing. Spark has a vibrant and active

community of developers, contributing to its growth and

development as a leading big data processing framework. In

fact, 80% of the Fortune 500 use Apache Spark for their

high-demanding data processing applications [4].

3.1. How does Spark Work?

Apache Spark can work on a single machine or deploy

under the clustered computing architecture. What makes it

so unique is that it uses in-memory caching and optimized

execution to process queries against data of any size [5].

This significantly reduces the need for disk I/O and speeds

up iterative algorithms. In contrast, Hadoop’s MapReduce

relies heavily on disk-based storage, leading to slower

processing times. [6]. It’s important to note that Spark is not

a data storage solution but performs computations on Spark

Java Virtual Machines (JVMs). [7].

Spark applications process data using Resilient

Distributed Datasets (RDDs), DataFrames, and Datasets,

with RDDs being the most fundamental data structure.

Spark’s execution model involves transforming data

through a sequence of narrow and wide transformations,

followed by actions that materialize the results. RDDs and

DataFrames are read-only data collections that can be

partitioned across a subset of Spark cluster machines and

form the main working component [8]. This capability

makes Spark one of the most simplistic Big Data processing

engines on the market today. In addition, by providing a set

of transformations and actions as operations, Spark offers a

simple programming model that you can be used to build

Big Data applications in familiar languages [9]. Spark

supports various programming languages like Scala, Java,

Python, SQL, and R. So, Data Engineers, scientists and

developers have multiple ways to develop data applications

based on the platform’s architecture and processing

resilience.

The other beauty of Spark is that it ships with its own

unified API libraries like Spark SQL for structured

streaming, Spark MLlib for Machine learning, Spark

Streaming and GraphX for analytics.

Parallel processing in Spark allows you to execute

concurrent workloads under one engine without the need for

separate clusters for each [10]. Spark puts focus on its fast,

parallel computation engine without having to prioritize

storage [9].

3.2. Cluster Architecture

Driver is the leader and coordinates the activity of

Executors. It is used for operations that require

consolidating data (collect, toPandas) or coordinating

executors (Kafka streaming). The driver can sometimes be

the bottleneck of your job.

On the other hand, Executors are followers and receive

instructions from the driver. They oversee the execution of

individual tasks within each Spark job and have scalable

computing power that enables them to process large

amounts of data efficiently.

Fig. 1 Spark Architecture

4. Basic Performance Factors
It is possible to tune and optimize Spark applications to

run faster to be able to achieve the results you want. There

are several techniques to employ to maximize performance;

4.1. Data Partitioning

Data partitioning is the process of dividing a dataset

into smaller, non-overlapping chunks called partitions. Each

partition represents a subset of the data, and these partitions

are distributed across the nodes of a Spark cluster. Data

partitioning impacts the parallelism of a Spark application.

Tasks are distributed evenly across the cluster by effectively

partitioning data, reducing data skew and minimizing

network overhead. The partitioning strategy should consider

data size, key distribution, and the nature of operations

performed.

4.2. Data Serialization
Serialization plays a vital role in Spark applications,

affecting both performance and memory usage. While Spark

uses Kryo serialization by default, users can customize

serialization settings or implement custom serializers for

specific data types to reduce overhead and improve

performance. This library offers more optimization and

performance potential compared to the Java serialization

method. It is ten times faster than Java serialization as it

serializes objects more quickly.

4.3. Shuffling
Shuffling in Spark is the process of redistributing data

across partitions in a distributed computing environment. It

typically occurs during operations that require data

reorganization, such as joins, groupBy, reduceByKey, and

repartition operations.

Shuffling can be a performance bottleneck in Spark

applications due to the following reasons:

N CORES / SLOTS

STORAGE WORKING

DISK DISK DISK DISK DISK

MEMORY

LOCAL STORAGE

EXECUTER

 DRIVER

DISK DISK DISK DISK DISK

LOCAL STORAGE N CORES / SLOTS

STORAGE WORKING

MEMORY
EXECUTER

CLUSTER

Anish Ninan / IJCTT, 71(5), 10-14, 2023

12

Fig 2. Shuffling

4.3.1. Data Movement

Shuffling involves transferring data across the network

between executor nodes. The more data that needs to be

moved, the longer it takes for the operation to complete.

4.3.2. I/O Overhead

As data is shuffled, it is written to disk and then read

back into memory by the executor nodes. This disk I/O

operation can be time-consuming, especially when dealing

with large volumes of data.

4.3.3. Serialization and Deserialization

Shuffling requires data serialization and

deserialization, which can add additional overhead to the

operation.

4.3.4. Garbage Collection

Shuffling may generate many short-lived objects,

leading to increased garbage collection pressure, which can

impact overall performance.

4.4. Caching

Caching is a powerful technique to optimize iterative

workloads or applications that reuse intermediate results.

Persisting data in memory or disk can significantly reduce

recomputation time and accelerate processing. However,

caching should be used judiciously, as it can lead to memory

pressure and garbage collection issues.

4.5. Data Skew

Data skew in Spark refers to uneven data distribution

across partitions in a distributed computing environment. In

other words, it occurs when some partitions have a

significantly larger amount of data than others. Data skew

can lead to performance bottlenecks and inefficient resource

utilization in Spark applications, as it impacts the following

aspects:

4.5.1. Parallelism

Ideally, data should be evenly distributed across all

partitions, enabling tasks to be processed concurrently and

efficiently. Data skew causes some tasks to take much

longer to complete due to their larger partition sizes, while

other tasks finish quickly, leading to an imbalance in task

execution times.

4.5.2. Resource Utilization

When data is skewed, some executor nodes may be

overloaded, processing more data than other nodes in the

cluster. This can result in wasted resources, as underutilized

nodes remain idle while waiting for the overloaded nodes to

complete their tasks.

4.5.3. Network Overhead

Data skew can also cause increased network overhead

during operations that involve shuffling, such as joins,

groupBy, or reduceByKey. Skewed data may require more

data movement across nodes, leading to higher network

latency and slower query execution times.

To mitigate the impact of data skew in Spark, you can

employ the following techniques:

4.5.4. Custom Partitioning

Use custom partitioning strategies, such as range

partitioning or hash partitioning with a suitable key, to

ensure even data distribution across partitions.

4.5.5. Increase Parallelism

Increase the number of partitions to reduce the amount

of data per partition and promote better load balancing.

4.5.6. Salting

For operations like joins, introduce a random salt key

to the skewed data by appending a random number to the

join key. This helps redistribute the data more evenly across

partitions, reducing the impact of skew.

4.5.7. Adaptive Query Execution

Enable Adaptive Query Execution (AQE) in Spark,

which dynamically adjusts the execution plan based on

runtime statistics. AQE can optimize operations like joins

and aggregations to handle skewed data more efficiently.

4.5.8. Broadcasting

In the case of joining a large DataFrame with a small

one, consider using broadcast joins. This will replicate the

smaller DataFrame to all worker nodes, avoiding the need

for shuffling and reducing the impact of data skew.

5. Advanced Optimization Techniques
5.1. Memory Usage Optimization

Spark uses static allocation and dynamic allocation of

resources to applications to be able to run efficiently. The

static allocation works in such a way that each application

is satisfactorily assigned an appropriate size of resources on

the cluster and reserves them for the duration as long as the

SparkContext keeps running [17]. On the other hand,

dynamic resource allocation can escalate the capability of

the static allocation by automatically adding and removing

executors of the Spark application as needed, based on a set

of heuristics for estimated resource requirements.

Spark applications work by using in-memory caching

[18]. So, efficient memory management is critical to

achieving maximum application performance.

STAGE 1

STAGE 2

Anish Ninan / IJCTT, 71(5), 10-14, 2023

13

5.2. Adaptive Query Execution

Adaptive Query Execution (AQE) is an advanced

optimization technique that dynamically adjusts query plans

based on runtime statistics. AQE can optimize join

strategies, repartition data, and adjust the degree of

parallelism, resulting in significant performance

improvements.

To enable AQE in Spark, you need to set the

spark.sql.adaptive.enabled configuration property to true:

AQE introduces several optimizations, including:

5.2.1. Coalesce Shuffle Partitions

During operations like joins or aggregations, AQE can

automatically coalesce shuffle partitions based on runtime

statistics to reduce the number of output partitions. This

optimization can minimize the overhead of small shuffle

partitions and improve the parallelism of subsequent stages.

5.2.2. Skew Join Optimization

AQE can detect and handle skewed data in join

operations by splitting the skewed partition into smaller,

more balanced partitions. This technique ensures better load

balancing and parallelism, reducing the impact of data skew

on query performance.

5.2.3. Dynamic Partition Pruning

AQE can improve join performance by pruning

unnecessary partitions in the fact table based on runtime

filter values from the dimension table. This optimization can

significantly reduce the amount of data read and processed

during joint operations.

6. Spark Configurations
1. “spark.sql.shuffle.partitions” is a configuration

parameter in Spark SQL that determines the number of

partitions to use when shuffling data during query

execution. The number of partitions can impact the

performance of Spark SQL queries. Setting the value

too high can lead to excessive memory usage while

setting it too low can result in slow query execution

times. As a best practice, the value of

spark.sql.shuffle.partitions should be set based on the

size of the data being shuffled and the available cluster

resources to ensure optimal performance.

2. “spark.executor.memory” is a configuration setting that

specifies the amount of memory allocated to each

executor (worker node) in a Spark cluster. This setting

defines the maximum amount of memory an executor

can use to store data and execute tasks. If the value is

set too low, the executor may run out of memory,

leading to slower performance. On the other hand, if the

value is set too high, it may lead to unnecessary

memory usage and limit the number of executors that

can run concurrently.

3. “spark.driver.memory” is a configuration setting in

Apache Spark that specifies the amount of memory to

allocate to the driver program. The driver program is

the main program that controls the execution of a Spark

application and runs on the driver node in the Spark

cluster. This setting controls the amount of memory

allocated to the driver JVM process. If the amount of

memory allocated to the driver process is too low, it can

cause out-of-memory errors and slow down the

application. On the other hand, if the amount of

memory allocated is too high, it can lead to inefficient

resource usage and slow down other applications

running on the same cluster. The value of

spark.driver.memory is typically specified in gigabytes

(e.g., 4g for four gigabytes).

4. “spark.executor.cores” is a configuration setting that

specifies the number of CPU cores that each executor

can use for processing tasks. The value of

spark.executor.cores depends on several factors, such

as the number of cores available on each worker node,

the amount of memory allocated to each executor, and

the nature of the workload being processed. Increasing

the number of cores per executor can improve the

parallelism and performance of the Spark application,

but it can also increase the memory footprint of each

executor and may result in increased contention for

resources.

7. Conclusion
In conclusion, this technical paper has explored various

optimization techniques for Apache Spark applications,

emphasizing the importance of understanding and

effectively addressing the challenges associated with

distributed data processing. The paper has covered key

aspects such as data partitioning, data shuffling, data skew,

and Adaptive Query Execution, providing insights into their

impact on performance, resource utilization, and scalability.

Additionally, the paper also provided real-world spark

configurations developers can set to optimize spark

applications. Optimizing Spark applications can be

challenging and requires specialized knowledge and

expertise. It’s important for developers to understand the

various trade-offs involved in Spark optimization, such as

the increased complexity, resource requirements, debugging

challenges, memory management, and limited support for

real-time data processing. Ultimately, the benefits of Spark

optimization in terms of faster execution times, improved

performance, and lower costs justify the effort and

investment required to optimize Spark applications. As the

demand for big data processing continues to grow and cost

concerns increase, Spark optimization will become an

increasingly important skill for developers and

organizations looking to unlock the full potential of big data

analytics.

References
[1] IBM, The First Multi-Core, 1GHz Processor. [Online]. Available: https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4

[2] Lawrence Livermore National Laboratory, Introduction to Parallel Computing Tutorial, 2022. [Online]. Available:

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

Anish Ninan / IJCTT, 71(5), 10-14, 2023

14

[3] B. Chambers, and M. Zaharia, Spark: The Definitive Guide, 1005 Gravenstein Highway North, Sebastopol, CA: O’Reilly Media,

Inc., 2018.

[4] Karthikeyan Rajendran, Speed Dialer: How AT&T Rings Up New Opportunities with Data Science, Nvidia, 2022. [Online]. Available:

https://blogs.nvidia.com/blog/2022/03/22/att-data-science-rapids /

[5] AWS, What is Apache Spark?, AWS, 2022. [Online]. Available:

https://aws.amazon.com/big-data/what-is-

spark/#:~:text=Apache%20Spark%20is%20an%20open,against%20data%20of%20any%20size.

[6] IBM Cloud Education, Hadoop vs Spark: What's the Difference?, IBM, 2021. [Online]. Available:

https://www.ibm.com/cloud/blog/hadoop-vs-spark

[7] Holden Karau, and Rachel Warren, How Spark Works, High Performance Spark, 2017, pp. 7-22.

[8] Apache Team, RDD Programming Guide, Apache, 2022. [Online]. Available: https://spark.apache.org/docs/latest/rdd-programming-

guide.html

[9] Jules S. Damji et al., Learning Spark, 2nd Edition, O'Reilly Media, Inc., 2020. [Google Scholar] [Publisher Link]

[10] Institute of Computer Science, University of Tartu, Parallel Computing, Databricks. [Online]. Available: https://databricks-prod-

cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6908168003362015/2853703854010541/462026168

4428706/latest.html

[11] Oracle Team, Interface Serializable, Oracle. [Online]. Available: https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html

Aoache Team, Spark Configuration. [Online]. Available: https://spark.apache.org/docs/latest/configuration.html#spark-properties
[12] Azure Team, How to Improve Performance with Bucketing, Microsoft, 2022. [Online]. Available: https://learn.microsoft.com/en-

us/azure/databricks/kb/data/bucketing

[13] Azure Team, Bucketing Example in Slack, Microsoft, 2022. [Online]. Available: https://learn.microsoft.com/en-

us/azure/databricks/_static/notebooks/bucketing-example.html

[14] Vithal S., Apache Spark SQL Bucketing Support – Explanation, DW Geek, 2020. [Online]. Available: https://dwgeek.com/apache-

spark-sql-bucketing-support-explanation.html

[15] Jun Guo, Bucketing 2.0: Improve Spark SQL Performance by Removing Shuffle, Databricks & Bytedance, 2020. [Online]. Available:

https://www.databricks.com/session_na20/bucketing-2-0-improve-spark-sql-performance-by-removing-shuffle

[16] Siddharth Ghosh, Partitioning vs Bucketing — In Apache Spark, A Medium Corporation, 2022. [Online]. Available:

https://medium.com/@ghoshsiddharth25/partitioning-vs-bucketing-in-apache-spark-a37b342082e4

[17] Holden Karau, and Rachel Warren, Resource Allocation Across Applications, High Performance Spark, 1005 Gravenstein Highway

North, Sebastopol, CA 95472, O’Reilly Media, Inc., p. 20, 2017. [Publisher Link]

[18] Apache Team, Performance Tuning, Apache, 2022.[Online]. Available: https://spark.apache.org/docs/latest/sql-performance-

tuning.html

[19] Apache Team, Tuning Spark, Apache, 2022. [Online]. Available: https://spark.apache.org/docs/latest/tuning.html

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=learning+sparks&btnG=&oq=Learning+Spark
https://www.oreilly.com/library/view/learning-spark-2nd/9781492050032/
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6908168003362015/2853703854010541/4620261684428706/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6908168003362015/2853703854010541/4620261684428706/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6908168003362015/2853703854010541/4620261684428706/latest.html
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://spark.apache.org/docs/latest/configuration.html#spark-properties
https://learn.microsoft.com/en-us/azure/databricks/kb/data/bucketing
https://learn.microsoft.com/en-us/azure/databricks/kb/data/bucketing
https://learn.microsoft.com/en-us/azure/databricks/_static/notebooks/bucketing-example.html
https://learn.microsoft.com/en-us/azure/databricks/_static/notebooks/bucketing-example.html
https://dwgeek.com/apache-spark-sql-bucketing-support-explanation.html
https://dwgeek.com/apache-spark-sql-bucketing-support-explanation.html
https://www.databricks.com/session_na20/bucketing-2-0-improve-spark-sql-performance-by-removing-shuffle
https://medium.com/@ghoshsiddharth25/partitioning-vs-bucketing-in-apache-spark-a37b342082e4
https://www.oreilly.com/library/view/high-performance-spark/9781491943199/
https://spark.apache.org/docs/latest/sql-performance-tuning.html
https://spark.apache.org/docs/latest/sql-performance-tuning.html
https://spark.apache.org/docs/latest/tuning.html

