
International Journal of Computer Trends and Technology- July to Aug Issue 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 235

GLIP: A Concurrency Control Protocol for
Clipping Indexing

J.RAMESH

Asst. Prof in CSE
QIS College of Engg &

Technology,
Ongole, Prakasam dist,

AP, India

N.SWATHI
(M.Tech – 09491D5807)
QIS College of Engg &

Technology,
Ongole, Prakasam dist,

AP, India

R. LAKSHMI TULASI
HOD of CSE Department
QIS College of Engg &

Technology,
Ongole, Prakasam dist,

AP, India

Abstract- The project Concurrency Control Protocol for Clipping Indexing deals with the multidimensional
databases. In multidimensional indexing trees, the overlapping of nodes will tend to degrade query performance,
as one single point query may need to traverse multiple branches of the tree if the query point is in an
overlapped area. Multidimensional databases are beginning to be used in a wide range of applications. To meet
this fast-growing demand, the R-tree family is being applied to support fast access to multidimensional data, for
which the R+-tree exhibits outstanding search performance. In order to support efficient concurrent access in
multiuser environments, concurrency control mechanisms for multidimensional indexing have been proposed.
However, these mechanisms cannot be directly applied to the R+-tree because an object in the R+-tree may be
indexed in multiple leaves. This paper proposes a concurrency control protocol for R-tree variants with object
clipping, namely, Granular Locking for clipping indexing (GLIP). GLIP is the first concurrency control
approach specifically designed for the R+-tree and its variants, and it supports efficient concurrent operations
with serializable isolation, consistency, and deadlock-free. Experimental tests on both real and synthetic data
sets validated the effectiveness and efficiency of the proposed concurrent access framework.

Key Words— Concurrency, indexing methods, spatial databases.

1 INTRODUCTION

In recent years, multidimensional
databases have begun to be used for a wide range
of applications, including geographical information
systems (GIS), computer-aided design (CAD), and
computer-aided medical diagnosis applications. As
a result of this fast-growing demand for these
emerging applications, the development of efficient
access methods for multidimensional data has
become a crucial aspect of database research. Many
indexing structures (e.g., the R-tree [10] family,
Generalized Search Trees (GiSTs) [11], grid files
[20], and z-ordering [21]) have been proposed to
support fast access to multidimensional data in
relational databases. Among these indexing
structures, the R-tree family has attracted
significant attention as the tree structure is regarded
as one of the most prominent indexing structures
for relational databases. On the other hand, as an
important issue related to indexing, concurrency
control methods that support concurrent access in
traditional databases are no longer adequate for
today’s multidimensional indexing structures due
to the lack of a total order among key values. In
order to support concurrency control in R-tree
structures, several approaches have been proposed,
such as Partial Locking Coupling (PLC) [25], and
granular locking approaches for R-trees and GiSTs
[4], [5].

In multidimensional indexing trees, the
overlapping of nodes will tend to degrade query
performance, as one single point query may need to
traverse multiple branches of the tree if the query
point is in an overlapped area. The R+-tree [23] has
been proposed based on modifications of the R-tree
to avoid overlaps between regions at the same
level, using object clipping to ensure that point
queries can follow only one single search path. The
R+-tree exhibits better search performance, making
it suitable for applications where search is the
predominant operation. For these applications, even
a marginal improvement in search operations can
result in significant benefits. Thus, the increased
cost of updates is an acceptable price to pay.
However, the R+-tree is not suitable for use with
current concurrency control methods because a
single object in the R+-tree may be indexed in
different leaf nodes. Special considerations are
needed to support concurrent queries on R+-trees,
while as far as we know, there is no concurrency
control approach that specifically supports R+-
trees.

Furthermore, there are some limitations in
the design of the R+-tree, such as its failure to
insert and split nodes in some complex overlap or
intersection cases [7]. This will be discussed in
Section 2.1.

This paper proposes a concurrency control
protocol for R-trees with object clipping, Granular

International Journal of Computer Trends and Technology- July to Aug Issue 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 236

Locking for clipping indexing (GLIP), to provide
phantom update protection for the R+-tree and its
variants. We also introduce the Zero overlap R+-
tree (ZR+-tree), which resolves the limitations of
the original R+-tree by eliminating the overlaps of
lead nodes. GLIP, together with the ZR+-tree,
constitutes an efficient and sound concurrent access
model for multi dimensional databases. The major
contributions are a follows:
 The concurrency control protocol, GLIP,

provides serializable isolation, consistency,
and deadlock-free operations for indexing trees
with object clipping.

 The proposed multidimensional access
method, ZR+-tree, utilizes object clipping,
optimized insertion, and reinsert approaches to
refine the indexing structure and remove
limitations in constructing and updating R+-
trees.

 GLIP and the ZR+-tree enable an efficient and
sound concurrent framework to be constructed
for multi-dimensional databases.

 A set of extensive experiments on both real
and synthetic data sets validated the efficiency
and effectiveness of the proposed concurrent
access framework.

Fig. 1. Examples of R-tree and R+-tree. (a) An R-tree
example. (b) An R+-tree example.

This paper is organized as follows: Section 2
reviews concurrency control methods and indexing
structures in multidimensional databases. Section 3
introduces the structure and characteristics of the
proposed ZR+-tree. The details of the concurrency
control approaches are discussed in Section 4.
Experimental results for both real and synthetic
data are analyzed in Section 5. Final conclusions
are drawn and future directions are suggested in
Section 6.

2 RELATED RESEARCH AND
MOTIVATION

In this section, we review the structure of
the R-tree family, discuss some limitations that
affect R+-trees, survey major concurrency control
algorithms based on B-trees and R-trees, and
summarize the challenges inherent in applying
concurrency control to R+-trees.

2.1 The R-Tree Family

The R-tree, an extension of the B-tree, is a
hierarchical, height-balanced multidimensional
indexing structure that guarantees its space
utilization is above a certain threshold.

In the R-tree, the root node has between 1 and M

entries. Every other node, either leaf or internal
node, has between m and M entries ð1 <m¼ <MÞ.
The leaf node holds references to the actual data
and the Minimum Bounding Rectangle (MBR),
which covers all the objects stored in that node.
The internal node holds references that point to its
children (leaf nodes or the next level of internal
nodes), the MBRs corresponding to its children,
and its own MBR.

Fig. 2. Limitations in R+-trees. (a) Unable to insert.

(b) Unable to split. (c) Different solutions to expand.

The R+-tree was first proposed in [23]. The
R+-tree uses a clipping approach to avoid overlap
between regions at the same level [7]. As a result of
this policy, a point query in the R+-tree corresponds
to a single path tree traversal from the root to a single
leaf. For search windows that are completely covered
by the MBR of a leaf node, the R+-tree guarantees
that only a single search path will be traversed.

Examples of the R-tree and R+-tree are
given in Fig. 1,whereA and B are leaf nodes, and C,D,
E, and F are MBRs of objects. Because objects D and
E overlap with each other in the data space, leaf nodes
A and B have to overlap in the R-tree in order to
contain the objects. In contrast, in the R+-tree, leaf
nodes do not have to cover an entire object, so object
Dcan be
included in both leaf nodes A and B. As a result, the
R+-tree clearly has a better search performance
compared to the R-tree. Experimental analyses of the
relative performances of R-trees and R+-trees indicate
that R+-trees generally perform better for search
operations [8], [12], although this benefit comes at the
cost of higher complexity for insertions and deletions.
The performance gain for search operations makes the

International Journal of Computer Trends and Technology- July to Aug Issue 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 237

R+-tree ideally suited for large spatial databases
where search is the predominant operation.

2.2 Concurrency Controls

Several concurrency control algorithms
have been pro- posed to support concurrent
operations on multidimensional index structures,
and they can be categorized into lock-coupling-
based and link-based algorithms. The lock-
coupling-based algorithms [6], [19] release the lock
on the current node only when the next node to be
visited has been locked while processing search
operations. During node splitting and MBR
updating, these approaches must hold multiple
locks on several nodes simultaneously, which may
deteriorate the system throughput.

 Phantom updating refers to updates that
occur before the commitment, in the range of a search
(or a following update), and are not reflected in the
results of that search (or the following update).
Concurrent data access through multidimensional
indexes introduces the problem of protecting a query
range from phantom updates. The dynamic granular
locking approach (DGL) has been proposed to provide
phantom update protection in the R-tree [4] and GiST
[5].

The DGL method dynamically partitions an
embedded space into lockable granules that adapt to
the distribution of objects. The leaf nodes and external
granules of internal nodes are defined as lockable
granules. External granules are additional structures
that partition the no covered space in each internal
node to provide protection. According to the
principles of granular locking, each operation requests
locks on sufficient granules such that any two
conflicting operations will request conflicting locks
on at least one common granule. Although the DGL
approach provides phantom update protection for
multidimensional access methods and granular locks
can be efficiently implemented, the complexity of
DGL may impact the degree of concurrency.

2.3 Challenges of Applying Concurrency
Control on R+-Trees

Several efficient key value locking
protocols to provide phantom update protection in
B-trees have been proposed [3], [17], [18].
However, they cannot be directly applied to
multidimensional index structures such as R-trees,
because for multidimensional data, a total order of
the key values on which these protocols are based
is undefined.

Fig 3. GL/R+-Tree on an R+-Tree

3 DEFINITION OF GLIP AND ZR+-TREE

Before proceeding to the details of the
proposed concurrent access framework, we first
define the notations that will be used throughout
this paper.

3.1 Terms and Notations

The presence of a standard lock manager
[15] is presumed to support conditional and
unconditional lock requests, as well as instant,
manual, and commit lock durations in GLIP.

A conditional lock request means that the

requester will not wait if the lock cannot be granted
immediately; an unconditional lock request means
that the requester is willing to wait until the lock
becomes grantable. Instant duration locks merely
test whether a lock is grantable, and no lock is
actually placed. Manual duration locks can be
explicitly released before the transaction is
completed. If they are not released explicitly, they
are automatically released at the time of commit or
rollback. Commit duration locks are automatically
released when the transaction ends.
Conventionally, five types of locks, namely, S
(shared locks), X (exclusive locks), IX (Intention to
set X locks), IS (Intention to set S locks), and SIX
(Union of S and IX locks) [6] are used. In the
proposed protocol, only S and X locks are used to
support concurrent operations with relatively
simple main-tenance processes.

TABLE 1

ZR+-Tree Node Attributes

3.2 R+-Tree and ZR+-Tree

R+-trees can be viewed as an extension of
K-D-B-trees [22] to cover rectangles in addition to
points. The original R+-tree has the following
properties [23]:
1. A leaf node has one or more entries of the

form ðoid;RECTÞ, where oid is an object
identifier, and RECT is the Minimum
Bounding Rectangle (MBR) of a data object.

2. An internal node has one or more entries of
the form ðp;RECTÞ, where p points to an R+-
tree leaf or internal node R, such that if R is
an internal node, then RECT is the MBR of
all the ðpi;RECTiÞ in R. However, if R is a
leaf node, for each ðoidi;RECTiÞ in R,
RECTi does not need to be completely
enclosed by RECT; each RECTi simply needs
to overlap with RECT.

International Journal of Computer Trends and Technology- July to Aug Issue 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 238

3. For any two entries ðp1;RECT1Þ and
ðp2;RECT2Þ in an internal node R, the
overlap between RECT1 and RECT2 is zero.

4. The root has at least two children unless it is a
leaf.

5. All leaves are at the same level.
Some modifications can bemade to the original R+-
tree to make it suitable for the situations mentioned
in Section 2.1.

Fig 4. An example of ZR+-Tree for the data in Fig 1

Fig 5. ZR+-tree solution to the problems in Fig 2

In addition to the structure evolution, two operation
strategies are proposed to improve insertions on the
ZR+-tree and refine the indexing tree.

Fig 6. A clip array for objects in Fig 5.

As only one MBR and several ids for each clipped
object are stored in this clip array, it is feasible to
store the whole array in physical memory. Based
on our experiments with real data, on the average,
each object is clipped into less than 1.5 segments,
so it is reasonable to assume that each clipped
object can use two double integers to denote the
MBR and 16 integers as eight links (two ids for
each link). In this case, 100,000 objects occupy
only 4 Mbytes, which is small compared to the
memory size available in mainstream computers.

3.3 Lockable Granules

Each leaf node in the ZR+-tree is defined
as a lockable granule. We also define an external
lockable granule for each ZR+-tree node as the
difference between the MBR of the node and the
union of the MBRs of its children. In order to
reduce the overhead associated with lock

maintenance, objects are not individually lockable.
The clip array introduced as an auxiliary structure
to store the object clipping information does not
need to be locked because the locking strategies on
leaf nodes ensure the serializability of access for
the same object, and updating one object will not
affect the other objects. Thus, in the case of the
indexing tree in Fig. 3.

Fig 8 Experimental design

4 OPERATIONS WITH GLIP ON ZR+-TREE
To support concurrent spatial operations on the R+-
tree and its variants, a granular locking-based
concurrency control approach, GLIP, that considers
the handling of clipped rectangles is proposed. The
approach is designed to meet the following
requirements:

1. The following concurrent operations
should be supported. Select for a given search
window. This is presumed to be the most
frequent operation. This operation could result in
the selection of a large number of objects, though
this may be only a fraction of the total number of
objects. Hence, it is desirable to have as few
locks as possible that must be requested and
released for this operation. Insert a given object.
Having redefined the properties of the R+-tree
with clipped objects, a new algorithm must be
provided for insertion in the ZR+-tree. Delete
objects intersected with a search window. Since
an object in the ZR+-tree may be clipped and the
search window might not select all the fragments
of a given object, the algorithm is required to
delete all fragments of the selected objects in
order to maintain consistency.

2. The locking protocol should ensure
serializable isolation for transactions, thus
allowing any combination of the above
operations performed.

3. The locking protocol should ensure
consistency of the ZR+-tree under structure
modifications. When ZR+-tree nodes are merged
or split in cases of underflow or overflow, the
occasionally inconsistent state should not lead to
invalid results.

4. The proposed locking protocol should not
lead to additional deadlocks.

International Journal of Computer Trends and Technology- July to Aug Issue 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 239

Details of the algorithms are provided in the
following sections with formal algorithm
descriptions.

5 EXPERIMENTS

In order to evaluate the performance of the
proposed concurrency control protocol, GLIP, two
sets of experiments were conducted as illustrated in
Fig. 8. The first set compared the construction and
query performance of the ZR+-tree, the R+-tree,
and the R-tree, while the other compared the
throughput of GLIP on the ZR+-tree and Dynamic
Granular Locking on the R-tree. The experimental
design consists of four components:
selecting/generating benchmark data sets,
constructing multidimensional in- dices, executing
query operations, and measuring respective
performance.

The second set of experiments evaluated
the throughput of GLIP on the ZR+-tree by
comparing it with dynamic granular locking on the
R-tree [4]. The throughputs for the two trees were
valuated under different write probabilities and
concurrency levels.

Fig 9. Construction failure in R+-Tree on long beach data.

6 CONCLUSION

This paper proposes a new concurrency
control protocol, GLIP, with an improved spatial
indexing approach, the ZR+-tree. GLIP is the first
concurrency control mechanism designed
specifically for the R+-tree and its variants. It
assures serializable isolation, consistency, and
deadlock free for indexing trees with object
clipping. The ZR+-tree segments the objects to
ensure every fragment is fully covered wby a leaf
node. This clipping-object design provides better
indexing structure. Furthermore, several structural
limitations of the R+-tree are overcome in the ZR+-
tree by the use of a no overlap clipping and a
clustering-based reinsert procedure. Experiments
on tree construction, query, and concurrent
execution were conducted on both real and
synthetic data sets, and the results validated the
soundness and comprehensive nature of the new
design. In particular, the GLIP and the ZR+-tree
excel at range queries in search-dominant
applications. Extending GLIP and the ZR+-tree to
perform spatial joins, KNN-queries, and range
aggregation offer further attractive possibilities.

REFERENCES
[1] M. Abdelguerfi, J. Givaudan, K. Shaw, and R.
Ladner, “The 2-3TR- Tree, a Trajectory-Oriented
Index Structure for Fully Evolving Valid-Time
Spatio-Temporal Datasets,” Proc. 10th ACM Int’l
Symp. Advances in Geographic Information
System (ACMGIS ’02), pp. 29-34, 2002.
[2] N. Beckmann, H.P. Kriegel, R. Schneider, and
B. Seeger, “The R -Tree: An Efficient and
Robust Access Method for Points and Rectangles,”
Proc. ACM SIGMOD ’90, pp. 322-331, 1990.
[3] A. Biliris, “Operation Specific Locking in B-
trees,” Proc. Sixth Int’l Conf. Principles of
Database Systems (PODS ’87), pp. 159-169, 1987.
[4] K. Chakrabarti and S. Mehrotra, “Dynamic
Granular Locking Approach to Phantom Protection
in R-Trees,” Proc. 14th IEEE Int’l Conf. Data Eng.
(ICDE ’98), pp. 446-454, 1998.
[5] K. Chakrabarti and S. Mehrotra, “Efficient
Concurrency Control in Multi-Dimensional Access
Methods,” Proc. ACM SIGMOD ’99, pp. 25-36,
1999.
[6] J.K. Chen, Y.F. Huang, and Y.H. Chin, “A
Study of Concurrent Operations on R-Trees,”
Information Sciences, vol. 98, nos. 1-4, pp. 263-
300, May 1997.
[7] V. Gaede and O. Gunther, “Multidimensional
Access Methods,” ACM Computing Surveys, vol.
30, no. 2, pp. 170-231, June 1998.
[8] D. Greene, “An Implementation and
Performance Analysis of Spatial Data
AccessMethods,” Proc. Fifth IEEE Int’l Conf. Data
Eng. (ICDE ’89), pp. 606-615, 1989.
[9] S. Guha, R. Rastogi, and K. Shim, “CURE: An
Efficient Clustering Algorithm for Large
Databases,” Proc. ACM
SIGMOD ’98, pp. 73-84, 1998.
[10] A. Guttman, “R-Trees: A Dynamic Index
Structure for Spatial Searching,” Proc. ACM
SIGMOD ’84, pp. 47-57, 1984.

AUTHORS PROFILES:

J.RAMESH received the
M.Tech degree from
JNTU, Kakinada. Now
working as Asst.Prof in
QIS College of
Engineering &
Technology.

N.SWATHI received the
the MCA degree from
Acharya Nagarjuna
University. Now pursuing
M.Tech (C.S.E) in QIS
college of Engineering&
Technology under JNTU,
Kakinada University.

NO Photo

