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Abstract- The project Concurrency Control Protocol for Clipping Indexing deals with the multidimensional 
databases. In multidimensional indexing trees, the overlapping of nodes will tend to degrade query performance, 
as one single point query may need to traverse multiple branches of the tree if the query point is in an 
overlapped area. Multidimensional databases are beginning to be used in a wide range of applications. To meet 
this fast-growing demand, the R-tree family is being applied to support fast access to multidimensional data, for 
which the R+-tree exhibits outstanding search performance. In order to support efficient concurrent access in 
multiuser environments, concurrency control mechanisms for multidimensional indexing have been proposed. 
However, these mechanisms cannot be directly applied to the R+-tree because an object in the R+-tree may be 
indexed in multiple leaves. This paper proposes a concurrency control protocol for R-tree variants with object 
clipping, namely, Granular Locking for clipping indexing (GLIP). GLIP is the first concurrency control 
approach specifically designed for the R+-tree and its variants, and it supports efficient concurrent operations 
with serializable isolation, consistency, and deadlock-free. Experimental tests on both real and synthetic data 
sets validated the effectiveness and efficiency of the proposed concurrent access framework. 

 
Key Words— Concurrency, indexing methods, spatial databases. 
 
 
1 INTRODUCTION 

In recent years, multidimensional 
databases have begun to be used for a wide range 
of applications, including geographical information 
systems (GIS), computer-aided design (CAD), and 
computer-aided medical diagnosis applications. As 
a result of this fast-growing demand for these 
emerging applications, the development of efficient 
access methods for multidimensional data has 
become a crucial aspect of database research. Many 
indexing structures (e.g., the R-tree [10] family, 
Generalized Search Trees (GiSTs) [11], grid files 
[20], and z-ordering [21]) have been proposed to 
support fast access to multidimensional data in 
relational databases. Among these indexing 
structures, the R-tree family has attracted 
significant attention as the tree structure is regarded 
as one of the most prominent indexing structures 
for relational databases. On the other hand, as an 
important issue related to indexing, concurrency 
control methods that support concurrent access in 
traditional databases are no longer adequate for 
today’s multidimensional indexing structures due 
to the lack of a total order among key values. In 
order to support concurrency control in R-tree 
structures, several approaches have been proposed, 
such as Partial Locking Coupling (PLC) [25], and 
granular locking approaches for R-trees and GiSTs 
[4], [5]. 

In multidimensional indexing trees, the 
overlapping of nodes will tend to degrade query 
performance, as one single point query may need to 
traverse multiple branches of the tree if the query 
point is in an overlapped area. The R+-tree [23] has 
been proposed based on modifications of the R-tree 
to avoid overlaps between regions at the same 
level, using object clipping to ensure that point 
queries can follow only one single search path. The 
R+-tree exhibits better search performance, making 
it suitable for applications where search is the 
predominant operation. For these applications, even 
a marginal improvement in search operations can 
result in significant benefits. Thus, the increased 
cost of updates is an acceptable price to pay. 
However, the R+-tree is not suitable for use with 
current concurrency control methods because a 
single object in the R+-tree may be indexed in 
different leaf nodes. Special considerations are 
needed to support concurrent queries on R+-trees, 
while as far as we know, there is no concurrency 
control approach that specifically supports R+-
trees. 

Furthermore, there are some limitations in 
the design of the R+-tree, such as its failure to 
insert and split nodes in some complex overlap or 
intersection cases [7]. This will be discussed in 
Section 2.1. 

This paper proposes a concurrency control 
protocol for R-trees with object clipping, Granular 
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Locking for clipping indexing (GLIP), to provide 
phantom update protection for the R+-tree and its 
variants. We also introduce the Zero overlap R+-
tree (ZR+-tree), which resolves the limitations of 
the original R+-tree by eliminating the overlaps of 
lead nodes. GLIP, together with the ZR+-tree, 
constitutes an efficient and sound concurrent access 
model for multi dimensional databases. The major 
contributions are a follows: 
 The concurrency control protocol, GLIP, 

provides serializable isolation, consistency, 
and deadlock-free operations for indexing trees 
with object clipping. 

 The proposed multidimensional access 
method, ZR+-tree, utilizes object clipping, 
optimized insertion, and reinsert approaches to 
refine the indexing structure and remove 
limitations in constructing and updating R+-
trees. 

 GLIP and the ZR+-tree enable an efficient and 
sound concurrent framework to be constructed 
for multi-dimensional databases. 

 A set of extensive experiments on both real 
and synthetic data sets validated the efficiency 
and effectiveness of the proposed concurrent 
access framework. 

 
Fig. 1.  Examples of R-tree and R+-tree.  (a) An R-tree 
example. (b) An R+-tree example. 
 
This paper is organized as follows: Section 2 
reviews concurrency control methods and indexing 
structures in multidimensional databases. Section 3 
introduces the structure and characteristics of the 
proposed ZR+-tree. The details of the concurrency 
control approaches are discussed in Section 4. 
Experimental results for both real and synthetic 
data are analyzed in Section 5. Final conclusions 
are drawn and future directions are suggested in 
Section 6. 

 
2 RELATED RESEARCH AND 
MOTIVATION 

In this section, we review the structure of 
the R-tree family, discuss some limitations that 
affect R+-trees, survey major concurrency control 
algorithms based on B-trees and R-trees, and 
summarize the challenges inherent in applying 
concurrency control to R+-trees. 

 
2.1 The R-Tree Family 

The R-tree, an extension of the B-tree, is a 
hierarchical, height-balanced multidimensional 
indexing structure that guarantees its space 
utilization is above a certain threshold. 

 
In the R-tree, the root node has between 1 and M 

entries. Every other node, either leaf or internal 
node, has between m and M entries ð1 <m¼ <MÞ. 
The leaf node holds references to the actual data 
and the Minimum Bounding Rectangle (MBR), 
which covers all the objects stored in that node. 
The internal node holds references that point to its 
children (leaf nodes or the next level of internal 
nodes), the MBRs corresponding to its children, 
and its own MBR. 

 
Fig. 2. Limitations in R+-trees. (a) Unable to insert. 

(b) Unable to split. (c) Different solutions to expand. 
 

The R+-tree was first proposed in [23]. The 
R+-tree uses a clipping approach to avoid overlap 
between regions at the same level [7]. As a result of 
this policy, a point query in the R+-tree corresponds 
to a single path tree traversal from the root to a single 
leaf. For search windows that are completely covered 
by the MBR of a leaf node, the R+-tree guarantees 
that only a single search path will be traversed. 
 

Examples of the R-tree and R+-tree are 
given in Fig. 1,whereA and B are leaf nodes, and C,D, 
E, and F are MBRs of objects. Because objects D and 
E overlap with each other in the data space, leaf nodes 
A and B have to overlap in the R-tree in order to 
contain the objects. In contrast, in the R+-tree, leaf 
nodes do not have to cover an entire object, so object 
Dcan be 
included in both leaf nodes A and B. As a result, the 
R+-tree clearly has a better search performance 
compared to the R-tree. Experimental analyses of the 
relative performances of R-trees and R+-trees indicate 
that R+-trees generally perform better for search 
operations [8], [12], although this benefit comes at the 
cost of higher complexity for insertions and deletions. 
The performance gain for search operations makes the 
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R+-tree ideally suited for large spatial databases 
where search is the predominant operation. 
 
2.2 Concurrency Controls 

Several concurrency control algorithms 
have been pro- posed to support concurrent 
operations on multidimensional index structures, 
and they can be categorized into lock-coupling-
based and link-based algorithms. The lock-
coupling-based algorithms [6], [19] release the lock 
on the current node only when the next node to be 
visited has been locked while processing search 
operations. During node splitting and MBR 
updating, these approaches must hold multiple 
locks on several nodes simultaneously, which may 
deteriorate the system throughput. 

 
 Phantom updating refers to updates that 
occur before the commitment, in the range of a search 
(or a following update), and are not reflected in the 
results of that search (or the following update). 
Concurrent data access through multidimensional 
indexes introduces the problem of protecting a query 
range from phantom updates. The dynamic granular 
locking approach (DGL) has been proposed to provide 
phantom update protection in the R-tree [4] and GiST 
[5]. 
 

The DGL method dynamically partitions an 
embedded space into lockable granules that adapt to 
the distribution of objects. The leaf nodes and external 
granules of internal nodes are defined as lockable 
granules. External granules are additional structures 
that partition the no covered space in each internal 
node to provide protection. According to the 
principles of granular locking, each operation requests 
locks on sufficient granules such that any two 
conflicting operations will request conflicting locks 
on at least one common granule. Although the DGL 
approach provides phantom update protection for 
multidimensional access methods and granular locks 
can be efficiently implemented, the complexity of 
DGL may impact the degree of concurrency. 
 
2.3 Challenges of Applying Concurrency 
Control on R+-Trees 

Several efficient key value locking 
protocols to provide phantom update protection in 
B-trees have been proposed [3], [17], [18]. 
However, they cannot be directly applied to 
multidimensional index structures such as R-trees, 
because for multidimensional data, a total order of 
the key values on which these protocols are based 
is undefined.  

 
Fig 3. GL/R+-Tree on an R+-Tree 
 
3 DEFINITION OF GLIP AND ZR+-TREE 

Before proceeding to the details of the 
proposed concurrent access framework, we first 
define the notations that will be used throughout 
this paper. 

 
3.1 Terms and Notations 

The presence of a standard lock manager 
[15] is presumed to support conditional and 
unconditional lock requests, as well as instant, 
manual, and commit lock durations in GLIP. 

 
A conditional lock request means that the 

requester will not wait if the lock cannot be granted 
immediately; an unconditional lock request means 
that the requester is willing to wait until the lock 
becomes grantable. Instant duration locks merely 
test whether a lock is grantable, and no lock is 
actually placed. Manual duration locks can be 
explicitly released before the transaction is 
completed. If they are not released explicitly, they 
are automatically released at the time of commit or 
rollback. Commit duration locks are automatically 
released when the transaction ends. 
Conventionally, five types of locks, namely, S 
(shared locks), X (exclusive locks), IX (Intention to 
set X locks), IS (Intention to set S locks), and SIX 
(Union of S and IX locks) [6] are used. In the 
proposed protocol, only S and X locks are used to 
support concurrent operations with relatively 
simple main-tenance processes. 

 
TABLE 1 

ZR+-Tree Node Attributes 

 
 
3.2 R+-Tree and ZR+-Tree 

R+-trees can be viewed as an extension of 
K-D-B-trees [22] to cover rectangles in addition to 
points. The original R+-tree has the following 
properties [23]: 
1. A leaf node has one or more entries of the 

form ðoid;RECTÞ, where oid is an object 
identifier, and RECT is the Minimum 
Bounding Rectangle (MBR) of a data object. 

2. An internal node has one or more entries of 
the form ðp;RECTÞ, where p points to an R+-
tree leaf or internal node R, such that if R is 
an internal node, then RECT is the MBR of 
all the ðpi;RECTiÞ in R. However, if R is a 
leaf node, for each ðoidi;RECTiÞ in R, 
RECTi does not need to be completely 
enclosed by RECT; each RECTi simply needs 
to overlap with RECT. 
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3. For any two entries ðp1;RECT1Þ and 
ðp2;RECT2Þ in an internal node R, the 
overlap between RECT1 and RECT2 is zero. 

4. The root has at least two children unless it is a 
leaf. 

5. All leaves are at the same level. 
Some modifications can bemade to the original R+-
tree to make it suitable for the situations mentioned 
in Section 2.1. 

 
Fig 4. An example of ZR+-Tree for the data in Fig 1 

 
Fig 5. ZR+-tree solution to the problems in Fig 2 
 
In addition to the structure evolution, two operation 
strategies are proposed to improve insertions on the 
ZR+-tree and refine the indexing tree. 
 

 
Fig 6. A clip array for objects in Fig 5. 
 
As only one MBR and several ids for each clipped 
object are stored in this clip array, it is feasible to 
store the whole array in physical memory. Based 
on our experiments with real data, on the average, 
each object is clipped into less than 1.5 segments, 
so it is reasonable to assume that each clipped 
object can use two double integers to denote the 
MBR and 16 integers as eight links (two ids for 
each link). In this case, 100,000 objects occupy 
only 4 Mbytes, which is small compared to the 
memory size available in mainstream computers. 
 
3.3 Lockable Granules 

Each leaf node in the ZR+-tree is defined 
as a lockable granule. We also define an external 
lockable granule for each ZR+-tree node as the 
difference between the MBR of the node and the 
union of the MBRs of its children. In order to 
reduce the overhead associated with lock 

maintenance, objects are not individually lockable. 
The clip array introduced as an auxiliary structure 
to store the object clipping information does not 
need to be locked because the locking strategies on 
leaf nodes ensure the serializability of access for 
the same object, and updating one object will not 
affect the other objects. Thus, in the case of the 
indexing tree in Fig. 3. 
 
Fig 8 Experimental design 

 

4 OPERATIONS WITH GLIP ON ZR+-TREE 
To support concurrent spatial operations on the R+-
tree and its variants, a granular locking-based 
concurrency control approach, GLIP, that considers 
the handling of clipped rectangles is proposed. The 
approach is designed to meet the following 
requirements: 

 
1. The following concurrent operations 
should be supported. Select for a given search 
window. This is presumed to be the most 
frequent operation. This operation could result in 
the selection of a large number of objects, though 
this may be only a fraction of the total number of 
objects. Hence, it is desirable to have as few 
locks as possible that must be requested and 
released for this operation. Insert a given object. 
Having redefined the properties of the R+-tree 
with clipped objects, a new algorithm must be 
provided for insertion in the ZR+-tree. Delete 
objects intersected with a search window. Since 
an object in the ZR+-tree may be clipped and the 
search window might not select all the fragments 
of a given object, the algorithm is required to 
delete all fragments of the selected objects in 
order to maintain consistency. 
 
2. The locking protocol should ensure 
serializable isolation for transactions, thus 
allowing any combination of the above 
operations performed.  
 
3. The locking protocol should ensure 
consistency of the ZR+-tree under structure 
modifications. When ZR+-tree nodes are merged 
or split in cases of underflow or overflow, the 
occasionally inconsistent state should not lead to 
invalid results. 
 
4. The proposed locking protocol should not 
lead to additional deadlocks. 
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Details of the algorithms are provided in the 
following sections with formal algorithm 
descriptions. 
 
5 EXPERIMENTS 

In order to evaluate the performance of the 
proposed concurrency control protocol, GLIP, two 
sets of experiments were conducted as illustrated in 
Fig. 8. The first set compared the construction and 
query performance of the ZR+-tree, the R+-tree, 
and the R-tree, while the other compared the 
throughput of GLIP on the ZR+-tree and Dynamic 
Granular Locking on the R-tree. The experimental 
design consists of four components: 
selecting/generating benchmark data sets, 
constructing multidimensional in- dices, executing 
query operations, and measuring respective 
performance. 
 

The second set of experiments evaluated 
the throughput of GLIP on the ZR+-tree by 
comparing it with dynamic granular locking on the 
R-tree [4]. The throughputs for the two trees were  
valuated under different write probabilities and 
concurrency levels. 

 
Fig 9. Construction failure in R+-Tree on long beach data. 
 
6 CONCLUSION 

This paper proposes a new concurrency 
control protocol, GLIP, with an improved spatial 
indexing approach, the ZR+-tree. GLIP is the first 
concurrency control mechanism designed 
specifically for the R+-tree and its variants. It 
assures serializable isolation, consistency, and 
deadlock free for indexing trees with object 
clipping. The ZR+-tree segments the objects to 
ensure every fragment is fully covered wby a leaf 
node. This clipping-object design provides better 
indexing structure. Furthermore, several structural 
limitations of the R+-tree are overcome in the ZR+-
tree by the use of a no overlap clipping and a 
clustering-based reinsert procedure. Experiments 
on tree construction, query, and concurrent 
execution were conducted on both real and 
synthetic data sets, and the results validated the 
soundness and comprehensive nature of the new 
design. In particular, the GLIP and the ZR+-tree 
excel at range queries in search-dominant 
applications. Extending GLIP and the ZR+-tree to 
perform spatial joins, KNN-queries, and range 
aggregation offer further attractive possibilities. 
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