
 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page36

An Effort Prediction Framework for Software Code Quality

Measurement Based on Quantifiable Constructs for Object

Oriented Design

 Prof. Waweru Mwangi Dr Wafula Joseph

Institute of Computer Science and Information Technology Institute of Computer Science and Information Technology

Jomo Kenyatta University of Agriculture and Technology Jomo Kenyatta University of Agriculture and Technology

Juja, Kenya. Juja, Kenya.

Stephen N. Waweru

Student: Masters in Software Engineering

Institute of Computer Science and Information Technology

JKUAT – Juja, Kenya.

Abstract: As the Object Oriented Technology enters into software organizations, it has created new challenges for the

companies which used only Product Metrics as a tool for monitoring, controlling and maintaining the software product. The

structural architecture focus of this research paper is to prove that the mechanisms of Object Oriented Design constructs,

namely Inheritance, Encapsulation and Polymorphism are the keys to foster reuse and achieve easier maintainability and

less complex software codes. This research paper proposes an effort prediction automated framework for software code

quality measurement; based on quantifiable constructs for object oriented design, the framework measures the effort of

maintaining and reusing the three constructs of Object Oriented Design that is; Encapsulation, Inheritance and

Polymorphism. The adoption of the Object Oriented Design constructs in this paper is to calculatedly produce easy to

maintain, reusable, better and cheaper software in the market. This research paper proceeds to automate the proposed

framework system that will be able to predict the effort of measuring the constructs of Object Oriented Design. In order to

achieve this, we have utilized one predictor which has been extremely studied: software metrics. The final outcome of this

paper is an effort prediction automated tool for software code quality assessment, which predicts effort of maintaining and

reusing Object Oriented Programming Languages based on the three OOD constructs. The results acquired are beneficial to

be used by software developers, software engineers and software project managers for aligning and orienting their design

with common industry practices.

Keywords; Object Oriented Design, maintainability, reusability, encapsulation, inheritance, polymorphism

1.0 Introduction

The backbone of any software system is its design. It is the

skeleton where the flesh (code) will be supported. A

defective skeleton will not allow harmonious growth and

will not easily accommodate change without amputations or

cumbersome with all kinds of side effects. Because

requirements analysis is most times incomplete, we must be

able to build software designs which are easily

understandable, alterable, testable and preferably stable

(with small propagation of modifications). The Object

Oriented (OO) constructs includes a set of mechanisms

such as inheritance, encapsulation, polymorphism and

message-passing that are believed to allow the construction

of Object Oriented Designs where those features are

enforced. It is widely accepted that object oriented

development requires a different way of thinking than

traditional structured development1 and software projects

are shifting to object oriented design. The main advantage

of object oriented design is its modularity and reusability.

Object oriented metrics are used to measure properties of

object oriented designs. Metrics are a means for attaining

more accurate estimations of project milestones, and

developing a software system that contains minimal faults

[1]. Project based metrics keep track of project

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page37

maintenance, budgeting etc. Design based metrics describe

the complexity, size and robustness of object oriented and

keep track of design performance. Compared to structural

development, object oriented design is a comparatively new

technology. The metrics, which Ire useful for evaluating

structural development, may perhaps not affect the design

using OO language. As for example, the “Lines of Code”

metric is used in structural development whereas it is not so

much used in object oriented design. Very few existing

metrics (so called traditional metrics) can measure object

oriented design properly. As discussed by Tang [8], claim

that “metrics such as Line of Code used on conventional

source code are generally criticized for being without solid

theoretical basis”. One study estimated corrective

maintenance cost saving of 42% by using object oriented

metrics [9]. There are many object oriented metrics models

available and several authors have proposed ways to

measure object oriented design.

2.0 Software Quality Overview

The word "Quality" has various meanings.

Figure 1. Various quality meanings

The definition given by the ISO/IEC 8402 standard is: "The

totality of features and characteristics of a product or a

service that bear on its ability to satisfy stated or implied

needs". Software quality can not be specified only as

software without error. The software quality specification

must be more accurate and detailed. The formalization of

the software quality can be done using a quality model.

Figure 2. Constructss of Software Quality Systems

2.1 Relations among Software Quality elements

The quality characteristics are used as the targets for

validation (external quality) and verification (internal

quality) at the various stages of development. They are

refined (see Figure 1) into sub-characteristics, until the

attributes or measurable properties are obtained. In this

context, metric or measure is a defined as a measurement

method and measurement means to use a metric or measure

to assign a value.

Fig. 3: Relations among the quality model elements

Figure 4. Subcharacteristics of ISO 9126-1 Quality

Model

2.3 The Software Quality Model

Our quality model defines a terminology and clarifies the

relationships between the reusability, maintainability and

the metrics suite. It is a useful tool for guiding software

engineers in data interpretation. It was defined based on a

set of assumptions. The definition of our quality model is

based on: (i) an extensive review of a set of existing quality

models [14], (ii) classical definitions of quality attributes

and traditional design theories, such as Parnas' theory,

which are commonly accepted among researchers and

practitioners and (iii) the software attributes impacted by

the aspect-oriented abstractions. The quality model has

been built and refined using Bluemke’s GQM methodology

[1].

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page38

Figure 5. Software quality assessment Framework

Effects of Software Quality in Software Code

Complexity

Figure 3 shows some of the elements that software quality

consists of. The structural complexity can have a direct

impact on how easy the product will be to maintain,

because to maintain, one must first understand how the

existing code works, then make the required modifications

and lastly verify that the changes are correct. The lower the

complexity, the more maintainable a system is, and thus it

decreases the time needed to fix bugs and speed up the

integration/development of new features. Also, the

complexity will have an indirect influence on the reliability

because the easier it is to test a system the more errors are

likely to be discovered before they reach the customer. This

will contribute further to the perceived quality of the

product

Figure 6: Hierarchy of Software Quality

2.4 Software Quality Characteristic Measures

To the extent possible CISQ measures quantify software

some of the Quality Characteristics defined in ISO 25010

which is replacing ISO 9126. ISO 25010 defines a Quality

Characteristic as being composed from several quality sub-

characteristics. Each quality sub-characteristic consists of a

collection of quality attributes that can be quantified as

Quality Measure Elements. These Quality Measure

Elements can either be counts of structural components or

violations of rules of good architectural or coding practice.

This specification extends these definitions to the detail

required to create measures for each Quality Characteristic

that can be computed from statically analyzing the source

code. Figure 1 presents an example of Software Quality

Characteristic measurement framework suggested in

ISO/IEC 25010 and ISO/IEC 15939 using a partial

decomposition for Maintainability.

Figure 7. ISO/IEC 25010 & 15939 Framework for

Software Quality Characteristics Measurement

Items in the blue boxes in Figure 1 represent the elements

of the measurement framework in ISO/IEC 25020 and

15939. Items in the gray boxes are the example

instantiations of these framework elements for Quality

Characteristic of Maintainability. In particular, the Software

Quality Attributes of ISO/IEC 25010 correspond to the

Quality Measure Elements in ISO/IEC 15939. Throughout

this specification we will refer to the countable structural

measure elements and Quality Rule violations as Quality

Measure Elements. Scores for individual Quality Measure

Elements are summed to create the measure for a Quality

Characteristic.

2.5 Need for Software Quality Measurement

Amongst others, software measurement assists software

designers in the software development process by enabling

them to resolve such issues as estimating:

i. Size of the software product early on in the design

phase

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page39

ii. Time and effort needed to develop a software product

iii. Error-proneness of the intended software and potential

error hot spots

iv. Resources needed for an effective development

process

v. Level of maintainability of software product from

early design documents

vi. Complexity of the developed code even when

developer has not yet started writing any Code

vii. Testability of software by quantifying structural design

diagrams

2.6 Software Quality Attributes

Software quality attributes and proposed as a set of

eleven design properties in the Figure 4. show a

design property definition that are Design Size,

Hierarchies, Abstraction, Encapsulation, Coupling,

Cohesion, Composition, Inheritance, Polymorphism,

Messaging, Complexity and a mathematical formulas

in the Table 2, show a design metrics for

maintainability estimation model.

Figure 8. The Quantification Process of the Maintainability

Estimation Model.

The above figure describes the quantification process

of the maintainability estimation model. The

flexibility and extensibility calculate from

Computation Formulas for Quality Attribute. Figure 2

reflects the structure of maintainability estimation

model

Figure 9. The structure of the maintainability

Estimation model

3.0 Software Maintainability and Reusability overview

Despite the subjectivity of any attempt to measure

maintainability, great effort has been put into constructing

formulas for describing maintainability. Following the

opinion that maintainability “is the set of attributes that bear

on the effort needed to make specified modifications” [16],

we describe maintainability according to this approach as a

function of directly measurable attributes A1 through An,

that is:

M = f(A1, A2, …, An) (1)

On an informal level, this approach is quite appealing it is

intuitive that a maintainable system must be e.g. consistent

and simple. However, there may be great difficulties in

measuring those attributes and weighting them against each

other and combine them in a function f. Any such attempt is

therefore bound to a quite limited context a particular

programming language, organization, type of system, type

of project; the skill and knowledge of the people involved

must also be considered then drawing conclusions. The

maintainability is a quality factor with influence in the

software maintenance phase. Many researchers reported

that 50-70% of the total life cycle is spent on software

maintenance phase can provided earlier feedback to help a

software designer improved the quality of software systems

and reduced the increasing high cost of software

maintenance phase. The maintainability is defined by IEEE

standard glossary of Software Engineering as “the ease with

which a software system or component can be modified to

correct faults, improve performance or other attributes, or

adapt to a changed environment”. Software maintenance

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page40

includes all post implementation changes made to software

entity.

Figure 3. Relationship between software desirable
characteristics (right) and measurable attributes (left) [15]

Maintainability refers to the easiness or toughness of the

required efforts to do the changes. Before any changes can

be made to a software entity, the software must be fully

understood. After the changes have been completed, the

revised entity must be thoroughly tested as well. For this

reason, maintainability can be thought of as three attributes:

understandability, modifiability, and testability. Harrison

sees software complexity as the primary factor affecting

these four attributes [17], Abstraction, Encapsulation,

Inheritance, and Polymorphism which are closely related to

the software code complexity (See Figure 4).

Figure 10. Harrisons Maintainability Model

In the same application, the time required per module to

determine the changes indicates understandability; the time

to change indicates modifiability; the time to test indicates

testability. Instead of collecting the measurement after the

product is completed, our approach is to forecast the

maintainability based on the source code and display the

measurement at any time the programmer wishes. The

source code can be at any stage of the development, and the

measurement will be computed automatically. This will

provide a real time grade of the software in the dimension

of maintainability.

Figure 7. Fenton’s decomposition of the maintainability [21]

4.0 Research Concept

4.1 Research Problem Statement

Increasingly, object-oriented measurements are being used

to evaluate and predict the quality of software [18]. A

growing body of empirical results supports the theoretical

validity of these metrics [3]. The validation of these metrics

requires convincingly demonstrating that the metric

measures what it purports to measure and the metric is

associated with an important external metric, such as

reliability, maintainability and fault-proneness [4]. Often

these metrics have been used as an early indicator of these

externally visible attributes, because the externally visible

attributes could not be measures until too late in the

software development process. Object oriented metrics

evaluate the object oriented concept: methods, classes,

cohesion, coupling and inheritance. Object oriented metrics

focus on the internal object structure. Object oriented

metrics measure externally the interaction among the

entities. Object oriented metrics measures the efficiency of

an algorithm.

4.2 Research Paper Objective

To experiment and validate a set of metrics suitable for

evaluating the use of the mechanisms that support the main

concepts of the Object-Oriented constructs and the

consequent emphasis on maintainability and reusability,

that are believed to be responsible for the increase in

software quality and development productivity. To propose,

evaluate and implement an effective and unique software

Abstraction

Encapsulation

Inheritance

Polymorphism

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page41

maintainability and reusability metrics based on

Inheritance, Encapsulation and Polymorphism in object

oriented systems so that it can be used by the industry as

well as academia. To automate, implement the parameter

and associated aspects based on the effort of maintaining

and reusing software code and develop the parser so that it

can automatically calculate the maintainability and

reusability effort in the level of Inheritance, Encapsulation

and Polymorphism.

4.3 Research Motivation

However, the last decade showed that even using the object

oriented constructs, coping with very large software

systems is a hard task: Very large software systems can

become several millions of lines of code long, with many

different people having taken part on its implementation

lasting into months or years. Many problems can affect

those systems, naming but a few: The original developers

left and there is nobody who fully understands the original

design decisions. Missing sparse or erroneous

documentation. Obsolete programming tools, platform

migrations and outdated hardware make it hard to find

people knowing such techniques or willing to deal with

such problems. A good example in this case is the so-called

millennium bug, also known as the Y2K - problem, where

suddenly a huge number of experts was needed to test

software written in languages which are no longer used

nowadays. Maintenance is often done by less experienced

programmers which have to face not only the problem of

complexity but also the problem of dealing with code from

unknown areas. In fact, experienced programmers which

often tend to move on to other projects and areas of interest,

take also a great deal of domain specific knowledge with

them which the maintainers sometimes lack. Several design

errors have made the evolution of the system nearly

impossible: small changes can affect large parts of the

system. There is duplicated code everywhere, which means

the programmers used to copy and paste often. Duplicated

code can cause code bloat, error propagation and decrease

flexibility (a change has to be done in many places). Even

with all those points speaking for a reprogramming from

scratch of the system, there is one main point speaking

against it: The system is working. Maintenance of such

systems is thus the only possible approach states that

maintenance, in its widest sense of ’post deployment

software support’, is likely to continue to represent a very

large fraction of total system cost. Rebuilding the system

from scratch would mean months or years of development,

but with the ongoing technology race such a long delay can

mean financial ruin.

5.0 Literature Review

A number of software metrics have been defined in

literature yet not all of them have been proved to be enough

significant. Therefore, some fundamental principles and

characteristics have to be considered while defining new

software metric. Zuse [19] provide a comprehensive

overview of different metrics properties proposed by

researchers. Conte et al. [20] suggest that a metric should be

objective; that is, the value must be computed in a precise

manner. He proceeds to say that a metric must be at least

valid, reliable and practical. It must also be intuitive (have

face validity) and possess some form of internal validity.

Figure 11. Boehm’s Quality model (1978)

Several maintainability models/methodologies were

proposed to help the designers in calculating the

maintainability of software so as to develop better and

improved software systems. Starting from 1970s to 2012

various maintainability predicting models or techniques

were developed.

Table 1. Maintainability models developed between 2009 -

2012

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page42

5.1 The Current Maintainability Model

The model was originally developed as an improvement

over the classic Maintainability Index of Paul Oman and

others. In collaboration with Delft University of

Technology and the University of Amsterdam, several

empirical studies have been conducted on the model.

Figure 12. Maintainability index of Paul Oman

These studies validate the strong predictive effect that the

model has for the efficiency of development and

maintenance tasks, such as resolution of defects and

implementation of enhancements. The Maintainability

Model is used by SIG to determine software product quality

in software risk assessments and during software

monitoring..

5.2 Taxonomy of Metrics

Software metric is the measurement, usually using

numerical ratings, to quantify some characteristics or

attributes of a software entity. Typical measurements

include the complexity and readability of the source

codes, the length and quality of the development

process and the efficiency and performance of the

accomplished applications. Some major

measurements are listed in table 3.

Table 2 Different Measurements in terms of Different roles

Software Engineering Metrics

Metrics are units of measurement. The term "metrics" is

also frequently used to mean a set of specific measurements

taken on a particular item or process. Software engineering

metrics are units of measurement that are used to

characterize:

i. Software engineering products, e.g., designs, source

code, and test cases.

ii. Software engineering processes, e.g., the activities of

analysis, designing, and coding.

iii. Software engineering people, e.g., the efficiency of an

individual tester, or the productivity of an individual

designer.

5.3 Taxonomy of Object Oriented Metrics

Different writers have described different metrics,

according to object oriented design, there are some

similarities found in different metrics model. The following

table shows similar OO metrics. We have categorized

metrics in class, attribute, method, cohesion, coupling, and

inheritance category because most of the object oriented

metrics are defined in above mention categories.

Table 6 . Similarity of Object Oriented Design Metrics

5.4 Measurable OOD Constructs

Table 3. Object Oriented Metrics

The design methods provide a set of techniques for

analyzing, decomposing, and modularizing software system

architectures. There is wide applicability of object-oriented

design in today’s scenario of software development

environment because it promotes better design and view a

software system as a set of interacting objects. Object-

oriented design must exhibit four features: inheritance, data

abstraction, dynamic binding, and information hiding.

Figure 4. Components of object-oriented software [8]

Category Class Attribute Method Cohesion Inheritance

 (C&K) [6] WMC,RFC,

LCOM

LCOM WMC,R

FC,

LCOM

CBO DIT,NOC

Chen & Lu

[7]

OXM,RM,

OACM

 CCM,

OCM

CHM

Li & Henry

[8]

DAC,MPC,

NOM

NOM MPMPC NOM

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page43

5.5 Object Oriented Design Quantifiable Characteristics

A set of components which can help measure, analyze,

represent and implement an object-oriented design should

include attributes, methods, objects (classes), relationships,

and class hierarchies. The diagram in Figure 3 illustrates the

mapping of quality carrying component properties to design

properties. It also shows the assigning of design metrics to

design properties. Finally, it presents the linking between

design properties to quality attributes. Some of the design

properties have positive influence on the quality attributes

while on other quality attributes, they could have negative

influence.

Figure 13. Bansiya, J. and Davis, C. G. “A Hierarchical

Model for Object-Oriented Design Quality Assessment,”

IEEE Transactions on Software Engineering, vol. 28, no. 1,

pp. 4-17, 2002.

Figure 5 Quantifiable (measurable) characteristics in OOD

6.0 Proposed Framework

The proposed framework provide a medium through which

software engineers can build robust, easy to maintain,

relatively cheaper and more importantly provide a

quantitative way of measuring the success of a project. This

Paper main objective is to achieve better software code

maintainability. Maintenance is the major resource waster

in the whole software life-cycle. Maintainability can be

evaluated through several quality sub characteristics like

analyzability, changeability, stability and testabilility

[ISO9126]. The software metrics are widely advocated as

fundamental elements of an engineering approach to

planning and controlling OO software development. The

Proposed Framework refers to the basic structural

mechanism of the Object Oriented Constructs. As a

consequence the proposed framework metrics ranges from 0

(no use) to 1 (maximum use). Being formally defined, the

proposed frameworks avoid subjectivity of measurement

and thus allow replicability. In other words, different people

at different times or places can yield the same values when

measuring the same systems. The Framework makes no

reference to specific language constructs that allow for

implementation of OO mechanisms in more or less detail. A

mapping concepts called binding between the proposed

Framework and the Adopted Language is required. The

proposed framework is also expected to be a system size

independent. Size independence allows inter-project

comparison, thus fostering cumulative knowledge. The

Proposed Framework measure THREE main structural

mechanism of Object Oriented Design;

The First subset describes how much the design Hides

Method and Attributes Internally within implementation

details.

a) Maintainability Effort for Attributes [MEA]

b) Maintainability Effort for Methods [MEM]

The Second subset describes class Hierarchy and

Reusability.

a) Reusability Effort for Attributes [REA]

b) Reusability Effort for Methods [REM]

The Third subset measures the Degree of Method

Overriding in the class inheritance structure

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page44

a) Method Overriding Effort (MOE)

6.1 Definition 1 - MEA

MEA measures how attributes are encapsulated in a class.

Visibility is counted in respect to other classes. MEA

represent the average amount of hiding among all classes in

the system. A private method/attribute is fully hidden

MEA = SOPri[a] + SOPro[a]

 SOPri[a] + SOPro[a] + SOPub[a]

where;

SOPri[a] : Sum of Private Attributes = ∑PriA (Ci)

SOPro[a] : Sum of Protected Attributes = ∑ProA (Ci)

SOPub[a]: Sum of Public Attributes = ∑PubA (Ci)

therefore;

MEA = ∑PriA (Ci) + ∑ProA (Ci)

 ∑PriA (Ci) + ∑ProA (Ci) + ∑PubA (Ci)

that is;

MEA =

where;

PriA (Ci) : Sum of Private Attributes in a class

ProA (Ci) : Sum of Protected Attributes in a class

PubA (Ci) : Sum of Public Attributes in a class

Ci : Total number of Classes

6.2 Definition 2 - MEM

MEM measures how methods are encapsulated in a class.

Visibility is counted in respect to other classes. MEM

represent the average amount of hiding among all classes in

the system. A private method/attribute is fully hidden

MEM = SOPri[m] + SOPro[m]

 SOPri[m] + SOPro[m] + SOPub[m]

where;

SOPri[m] : Sum of Private Methods = ∑PriM (Ci)

SOPro[m] : Sum of Protected Methods = ∑ProM (Ci)

SOPub[m] : Sum of Public Methods = ∑PubM (Ci)

therefore;

MEM = ∑PriM (Ci) + ∑ProM (Ci)

 ∑PriM (Ci) + ∑ProM (Ci) + ∑PubM (Ci)

that is;

MEM =

where;

PriM (Ci) : Sum of Private Methods in a class

ProM (Ci) : Sum of Protected Methods in a class

PubM (Ci) : Sum of Public Methods in a class

C : Total number of Classes

6.3 Framework Definition 1 & 2 Overview

The MEA numerator is the sum of the invisibilities of all

attributes defined in all classes. The invisibility of a

attributes is the percentage of the total classes from which

this attribute is not visible. The MEA denominator is the

total number of attributes defined in the system under

consideration. The MEM numerator is the sum of the

invisibilities of all methods defined in all classes. The

invisibility of a method is the percentage of the total classes

from which this method is not visible. The MEM

)()(Pr)(Pr

)(Pr)(Pr

11 1

1 1

i

A

C

i

i

C

i A

C

i

iA

C

i

C

i

iAiA

CPubCoCi

CoCi

)()(Pr)(Pr

)(Pr)(Pr

11 1

1 1

i

M

C

i

i

C

i M

C

i

iM

C

i

C

i

iMiM

CPubCoCi

CoCi

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page45

denominator is the total number of methods defined in the

system under consideration.

6.4 Definition 3 - REM

REM is a measure of a class methods inherited density

complexity.

REM (Ci) = NIM (Ci)

 NNM (Ci) + NOM (Ci) + NIM (Ci)

where;

REM (Ci): Reusability Effort for Methods

NIM (Ci): Number of Inherited Methods in a class

NNM (Ci) : Number of New Methods in a class

NOM (Ci) : Number of Overridden Methods in a class

Ci : Total Number of Classes

REM(Ci) = ∑NIM (Ci) / ∑NNM (Ci) + ∑NOM (Ci) + ∑NIM

(Ci)

 that is;

REM (Ci) =

where;

REM (Ci) : Reusability Effort for Methods

NIM (Ci) : Number of Inherited Methods in a class

NNM (Ci) : Number of New Methods in a class

NOM (Ci) : Number of Overridden Methods in a class

Tc : Total Number of Classes

6.5 Definition 4 - REA

REA is a measure of a class attributes inherited density

complexity.

REA (Ci) = NIA (Ci)

 NNA (Ci) + NOA (Ci) + NIA (Ci)

where;

REA (Ci) : Reusability Effort for Attributes

NIA (Ci) : Number of Inherited Attributes in a class

NNA (Ci) : Number of New Attributes in a class

NOA (Ci) : Number of Overridden Attributes in a class

Ci : Total Number of Classes

REA(Ci) = ∑NIA (Ci) / ∑NNA(Ci) + ∑NOA (Ci) + ∑NIA (Ci)

that is;

REA (Ci) =

where;

REA (Ci): Reusability Effort for Attributes

NIA (Ci) : Number of Inherited Attributes in a class

NNA(Ci) : Number of New Attributes in a class

NOA (Ci) : Number of Overridden Attributes in a class

Tc : Total Number of Classes

6.5 Framework Definition 3 & 4 Overview

The REM numerator is the sum of inherited methods in all

classes of the system under consideration. The REM

denominator is the total number of available methods (new

methods declared, overriding methods plus inherited

methods) for all classes. The REA numerator is the sum of

inherited attributes in all classes of the system under

consideration. The REA denominator is the total number of

available attributes (new attributes declared, overriding

attributes plus inherited attributes) for all classes. A class

that inherits lots of methods /attributes from its ancestor

classes contributes to a high REM / REA. A child class that

redefines its ancestors' methods/attributes and adds new

ones contributes to a lower REM/REA. An independent

class that does not inherit and has no children contributes to

a lower REM/REA. REM & REA should be in a reasonable

range, not too low and not too high either. Too high a value

C

i

C

i

C

i

iMiMiM

C

i

im

CNICNOCNM

CNI

1 1 1

1

)()()(

)(

C

i

C

i

C

i

iAiAiA

C

i

iA

CNICNOCNM

CNI

1 1 1

1

)()()(

)(

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page46

indicates either excessive inheritance or too wide member

scopes. A low value indicates lack of inheritance or heavy

use of Overrides. Another view is that REA should ideally

be zero because all variables should be declared Private.

For a class lacking an Inherits statement, REM=0 and

REA=0. For a class with no attributes, REA=0. For a class

with no methods, REM=0.

A method/attribute is inherited if:

i. It’s defined in the base class

ii. It’s visible in the child class

iii. It’s not overridden in the child.

6.6 Definition 5 – MOE

MOE measures the degree of method overriding in the class

inheritance structure

 MOE = MO

 NM x Dc

where;

MO : Method Overrides

NM : New Methods

Dc : Descendants

that is;

MOE =

where;

MOE : Method Overriding Effort

AMO : Actual Method overrides in a Class (Ci)

NMC : Number of New methods in a Class (Ci)

DC : Number of Descendants

C : Total Number of Classes

6.7 Framework Definition 5 Overview

MOE measures the degree of method overriding in the class

inheritance tree. It equals the number of actual method

overrides divided by the maximum number of possible

method overrides. A call to an object’s method can be

statically or dynamically bound to a named method

implementation. The latter can have as many shapes as the

number of times the method is overridden in that class’s

descendants. In the formula, the numerator equals the

actual overrides and the denominator is the maximum

number of possible overrides. If you always override

everything, you get a MOE of 1. If your child classes

seldom override their parent's methods, you get a low MOE.

If your parent classes declare sealed methods, you will end

up with a low MOE. Overrides can be used to a reasonable

extent to keep the code clear, but that excessively overrides

be too complex to understand (because several alternative

methods can execute for one call statement).

7.0 Proposed Framework System Experimentations

To help clarify the Framework Robustness and

Applicability, the following C++ code will be used.

Figure 14. UML Class Diagram Representation for the

Entire C++ Code

Class

BasicComponent

Class

UIComponet

Class
Application

Class

Clock

C

i

C

i

iCiC

C

i

iO

CDCNM

CAM

1 1

1

)()(

)(

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page47

Figure 15. UML Class Diagram for Class

BasicComponent

i) MEM Computation

p() methods = 1

v() methods = 4

d() methods = p() + v() = 5

 = 1/5

 = 0.2

ii) MEA Computation

p() attributes = 2

v() attributes = 0

d() attributes = p() + v() = 2

 = 2/2

 = 1

iii) REM Computation

h() methods = 5

o() methods = 0

i() methods = 0

d() methods = (5+0) = 0

a() methods = (5+0) = 5

 = 0/5

 = 0

iv) REA Computation

h() methods = 2

o() methods = 0

i() methods = 0

d() methods = (2+0) = 2

a() methods = (2 + 0) = 2

 = 0/2

 = 0

Figure 16. UML Class Diagram for Class UIComponent

i) MEM Computation

p() methods = 6

v() methods = 3

d() methods = p() + v() = 9

 = 6/9

 = 0.67

BasicComponent

(-) _name

(-) _w

-BasicComponent [constructor]

+BasicComponent() [destructor]

+manage()

+unmanage()

+baseWidget()

UIComponent

-widgetDestroyedCallback()

-UIComponet[constructor]

-installDestroyedHandler()

-widgetDestroyed()

-setDefaultResources()

-getResources

_UIComponent[destructor]

+manage()

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page48

ii) MEA Computation

p() attributes = 0

v()attributes = 0

d() attributes = p() + v() = 0

 = 0/0

 = 0

iii) REM Computation

h() methods = 8

o() methods = 1

i() methods = 4

d() methods = (8+1) = 9

a() methods = (9 + 4) = 13

 = 4/13

 = 0.3

iv) REA Computation

h() methods = 0

o() methods = 0

i() methods = 2

d() methods = (0+0) = 0

a() methods = (0 + 2) = 2

 = 2/2

 = 1

Figure 17. UML Class Diagram for Class Application

i) MEM Computation

p() methods = 5

v() methods = 9

d() methods = p() + v() = 14

 = 5/14

 = 0.36

ii) MEA Computation

p() attributes = 5

v() attributes = 0

d() attributes = p() + v() = 5

 = 5/5= 1

Application

(-) _display

(-) _appContext

(-) _applicationClass

(-) _windows

(-) _numWindows

-main()

-registerWindows()

-unregisteredWindows()

-initialize()

-handleEvents()

+Application[constructor]

+Application()[destructor]

+manage()

-unmanage()

+iconify()

+display()

+appContext()

+applicationClass

+classNam()

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page49

iii) REM Computation

h() methods = 11

o() methods = 1

i() methods = 9

d() methods = (11+3) = 14

a() methods = (14 + 9) = 23

 = 9/23

 = 0.67

iv) REA Computation

h() methods = 5

o() methods = 0

i() methods = 2

d() methods = (5+0) = 5

a() methods = (5 + 2) = 7

 = 2/7

 = 0.28

Figure 18. UML Class Diagram for Class Clock

i) MEM Computation

p() methods = 5

v() methods = 6

d() methods = p() + v() = 11

 = 5/11

 = 0.45

ii) MEA Computation

p() methods = 2

v() methods = 0

d() methods = p() + v() = 2

 = 2/2

 = 1

iii) REM Computation

h() methods = 10

o() methods = 1

i() methods = 11

d() methods = (10+1) = 11

a() methods = (11 + 11) = 22

 = 11/22

 = 0.5

iv) REA Computation

h() methods = 2

o() methods = 0

i() methods = 2

d() methods = (2+0) = 2

a() methods = (2 + 2) = 4

 = 2/4

 = 0.5

Clock

(-) _delta

(-) _id

-timeout()

-speedChanged()

-timeoutCallback()
-speedChangedCallback()

-tick()

+clock[constructor]
+clock[destructor]

+stop()

+pulse()

+start()

+className()

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page50

Framework Analysis and Derived Conclusions

Class MEM

Results

MEA

Results

REM

Results

REA

Results

Class

BasicComponent

0.2 1 0 0

Class

UIComponent

0.67 0 0.3 1

Class Application 0.36 1 0.67 0.28

Class Clock 0.45 1 0.5 0.50

Table 6. Summarized analysis computation results for the

proposed Framework

The implementation of the class interface should be a

stepwise decomposition process, where more and more

details are added. This decomposition will use hidden

methods, thus obtaining the above-mentioned information-

hiding benefits and favouring an MEM increase. A very

low MEM value would indicate an insufficiently abstracted

implementation. Conversely, a high MEM value would

indicate very little functionality. MEM serves as an

indicator of the complexity of the class methods. High

MEM is an indicator of classes comprised of methods with

high complexity. If all methods are private/protected, MEM

= 1, High encapsulation decreases the complexity since

encapsulated methods dictate the scope from which they

may be accessed therefore limiting the number of locations

which makes the debugging process easier. If all methods

are public, MEM = 0 shows methods are unprotected and

chances of errors are high.

Very low values of MEA should trigger the designers

attention. In general, as MEA increases, the complexity of

the program decreases. MEA measures the total number of

attributes encapsulated in the class. The MEA may be

expressed as a fraction in which the denominator is the

number of total attributes whereas the numerator is the total

of encapsulated attributes defined in all the classes. If all

attributes are private/protected then MEA = 1 and If all

attributes are public then MEA = 0 this shows methods are

unprotected and chances of errors are high. Classes with

high MEA indicate a higher percentage of methods that

require rigorous testing

REM is the inherited methods/total methods available in

classes i.e. the ratio of inherited methods to total number

methods of available classes. Both REM and REM should

be maintained at mediocre ratios since too high a ratio of

either indicates excessive inheritance and too low a ratio

indicates a poor object-oriented framework. A class with

high REM will require more testing effort, as it is easily

affected by changes made in other classes. The cause of

change in behaviour of this class may be more difficult to

trace, as it is not found in the class itself. As a result, classes

should not inherit from classes with high REM.

REA is the inherited attributes/total attributes available in

classes i.e. the ratio of inherited attributes to the total

number of attributes. A class with high REA will require

more testing effort, as it is easily affected by changes made

in other classes. The cause of change in behaviour of this

class may be more difficult to trace, as it is not found in the

class itself. As a result, classes should not inherit from

classes with high REA.

7.2 The Proposed Framework System Overview

He proposed automated framework Measurement Tool is a

software measurement environment to analyze program

source code for software reuse and maintenance. It is

especially designed for object-oriented software. This tool

measures attributes from OOD source code, collects the

measured data, computes various object-oriented software

metrics, and presents the measurement results in a tabular

form. The tabular interface of the tool provides software

developers the capabilities of inspecting software systems,

and makes it easy for the developers to collect the metric

data and to use them for improving software quality. By

browsing reusable units and maintainable units, a

developer can learn how to reuse certain software entity and

how to locate problematic parts. The application of this

easy-to-use tool significantly improves a developer’s ability

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page51

to identify and analyze quality characteristics of an object-

oriented software system. The intended application domain

is small, middle and large sized software developed in

OOD. The key components of the architecture are: 1) User

Interface, 2) JavaCode analyzer, 3) Internal Measurement

Tree, 4) Measurement Data Generator, and 5) Measurement

Table Generator.

7.3 Proposed System Architecture

Figure 19 A Structure of Proposed Software Code Quality

Assessment Tool

This tool automates the collection of data by parsing and

uses these data to calculate the proposed object-oriented

designs metrics constructs; that is Encapsulation,

Inheritance and Polymorphism.

7.4 System Framework Automation Architecture

Figure 20. Proposed system architecture

Constructing Phase

Metrics users customize the metrics model based on the

implemented metrics.

Analyzing Phase

The analysis front end analyzes source code, extracts

program information and stores it into the program

information database through the database server.

Calculating Phase

After users select some models in the model database, all

the values of the model are calculated from the information

database and then are stored into metrics model database.

Tool

The model database is used to store the definition of the

proposed metrics and the result values of the calculated

metrics.

Displaying Phase

The display part loads the metrics data from metrics model

database and provides visual presentation such as chart,

graph or illustration to display the metrics result.

8.0 Conclusions

In general the existing OOD metrics suffer from unclear

definitions and a failure to capture OO-specific attributes.

The attributes of data-hiding, polymorphism and abstraction

are not measured at all and the attributes of inheritance and

encapsulation are only partially measured. The proposed

framework is most suitable to assess object oriented

programs, and proved successfully used to assess Object

Oriented Programs. The automated System is not only

useful for assessing programs, but also a tool to find the

deficiency in each program under assessment. The System

can easily be used to assess programs at process level. The

system can be used to assess both large and small programs.

The adoption of the Object-Oriented constructs is expected

to help produce better and cheaper software. Keeping on

the evolution track means we must be able to quantify our

software improvements. Metrics will help us to achieve this

goal. Despite the criticisms, and with little further empirical

or theoretical evaluation, other OOD metrics have been

incorporated into a number of software measurement tools

and look set to become industry standards.

http://www.ijcttjournal.org/

 International Journal of Computer Trends and Technology (IJCTT) – volume 10 number 1 – Apr 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page52

8.1 Future Work

Our long term plan is to utilise, and build on, the best of the

existing work in order to propose a set of basic, language-

independent design measures that are theoretically sound as

well as being acceptable, understandable and useful to all

sections of the software engineering community. More

work about empirical validation is necessary using proven

statistical and experimental techniques in order to improve

their interpretation. More clear interpretation guidelines for

these metrics based on common sense and experience are

necessary. Building quality systems has been the driving

goal of all software engineering efforts over the last two

decades. The lack of design and implementation guidance

can lead to the misuse of the aspect-oriented abstractions,

worsening the overall quality of the system. Important

quality requirements, such as reusability and

maintainability, are likely to be affected negatively due to

the inadequate use of the aspect-oriented languages and

respective abstract

9.0 References

[1] I. Bluemke, “Object oriented metrics useful in the prediction of

class testing complexity,” in Proceedings of the 27th Euromicro

Conference, pp. 130–136, 2001.

[2] T. J. McCabe, “Complexity Measure,” IEEE Transactions on

Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[3] S. R. Chidamber and C. F. Kemerer, “Metrics suite for object

oriented design,” IEEE Transactions on Software Engineering, vol.

20, no. 6, pp. 476–493, 1994.

[4] M. Bundschuh and C. Dekkers, “Object-oriented metrics,” in

The IT Measurement Compendium, M. Bundschuh and C. Dekkers,

Eds., pp. 241–255, Springer, Berlin, Germany, 2008.

[5] I. Vessey and R.Weber, “Research on structured programming:

an wm piricist’s evaluation,” IEEE Transactions on Software

Engineering, vol. 10, no. 4, pp. 397–407, 1984.

[6] T.Wandand R. Weber, “Toward a theory of the deep structure

of information systems,” in Proceedings of International

Conference Information System, pp. 61–71, 1990.

[7] V. R. Basili and B. T. Perricone, “Software errors and

complexity: an empirical investigation,” Communications of the

ACM, vol. 27, no. 1, pp. 42–52, 1984.

[8] M. H. Tang, M.H. Kao, and M. H. Chen, “An empirical study

on object-oriented metrics,” in Proceedings of the 6th International

Software Metrics Symposium, pp. 242–249, November 1999.

[9] S. Sarkar, A. C. Kak, and G. M. Rama, “Metrics for measuring

the quality of modularization of large-scale object-oriented

[10] Y.Zhou, B. Xu, and H. Leung, “On the ability f complexity

metrics to predict fault-prone classes in object-oriented systems,”

Journal of SystemsandSoftware, vol. 83,no. 4, pp.660–674, 2010.

[11] H.M.Olague, L. H. Etzkorn, S. L. Messimer, and H.

S.Delugach, “An empirical validation of object-oriented class

complexity metrics and their ability to predict error-prone classes

in highly iterative, or agile, software: a case study,” Journal of

Software Maintenance and Evolution, vol. 20, no. 3, pp. 171–197,

2008.

[12] L. C. Briand and J. W. Daly, “A unified framework for

coupling measurement in object-oriented systems,” IEEE

Transactions on Software Engineering, vol. 25, no. 1, pp. 91–121,

1999.

[13] L. C. Briand, J.Wust, J.W.Daly, and D.Victor Porter,

“Exploring the relationships between design measures and software

quality in object-oriented systems,” Journal of Systems and

Software, vol. 51, no. 1, pp. 245–273, 2000.

[13] F. T. Sheldon and H. Chung, “Measuring the complexity of

class diagrams in reverse engineering,” Journal of Software

Maintenance and Evolution, vol. 18, no. 5, pp. 333–350, 2006.

[14] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding

software metrics threshold values using ROC curves,” Journal of

Software Maintenance and Evolution, vol. 22, no. 1, pp. 1–16,

2010.

[15] W. Li and S. Henry, “Object-oriented metrics that predict

maintainability, “The Journal of Systems and Software, vol. 23, no.

2, pp. 111–122, 1993.

[16] N. I. Churcher and M. J. Shepperd, “‘Comments on’ a metrics

suite for object oriented design,” IEEE Transactions on Software

Engineering, vol. 21, no. 3, pp. 263–265, 1995.

[18] International Organization for Standardization. “ISO/IEC

9126 - Information Technology- Software Product Evaluation -

Quality Characteristics and Guidelines for their use”.

[19] H. Zuse. "Software Complexity: Measures and Methods".

Walter de Gruyer (New York), 1991.

http://www.ijcttjournal.org/

