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Abstract— Fault tolerance is a key factor of industrial computing 

systems design. But in practical terms, these systems, like every 

commercial product, are under great financial constraints and 

they have to remain in operational state as long as possible due to 

their commercial attractiveness. This work provides an analysis 

of the instantaneous failure rate of these systems at the end of 

their life-time period. On the basis of this analysis, we determine 

the effect of a critical increase in the system failure rate and the 

basic condition of its existence. The next step determines the 

maintenance scheduling which can help to avoid this effect and to 

extend the system life-time in fault-tolerant mode.   
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I. INTRODUCTION 

Nowadays, manufacturing companies are seeking to 

continuously improve efficiency and drive down costs for 

existing facilities and processes. The key to achieving these 

goals is uninterrupted access to information. With a constant 

flow of data (including real-time technological processes), 

manufacturers can develop more efficient ways to connect 

globally with suppliers, employees and partners, and to more 

effectively meet the needs of their customers. As a 

consequence, in addition to the technical specifications 

(performance, interoperability, functionality, etc.), industrial 

computing systems face the following additional challenges: 

 reliability – solutions must support the operational 

availability of the manufacturing facility; 

 cost – capital comes at a premium, and additional costs 

(or costlier components) must add clear value that is 

understood by the financial management;  

 flexibility – solutions have to rely on commercial off-

the-shelf (COTS) equipment, provided by a number of 

vendors. 

Operational availability is the critical feature of industrial 

computing systems. For this reason the design of these 

systems is based on the concepts of fault tolerance – in 

practical terms, they are able to keep working to a level of 

satisfaction in the presence of technical and/or organizational 

problems, including [1]: 

 hardware-related faults; 

 software bugs and errors;  

 physical damage or other flaws introduced into the 

system from the environment; 

 operator errors, such as erroneous keystrokes, bad 

command sequences, or installing unexpected software. 

The key factor of the fault tolerant design is preventing 

failures due to system components and it addresses the 

fundamental characteristic of fault tolerance in two ways 

[2][3]: 

 replication – providing multiple identical instances of 

the same component and choosing the correct result on 

the basis of a quorum (voting); 

 redundancy – providing multiple identical instances of 

the same component and switching to one of the 

remaining instances in case of a failure (failover). 

On the other hand, it is well known that the effectiveness of 

computing systems depend on both the quality of its design as 

well as the proper maintenance actions to prevent it from 

failing. In fact, the choice of scheduled maintenance policies 

which are optimum from an economic point of view 

constitutes a predominating approach in reliability theory [4]. 

Our main goal is finding the simplest and cheapest solution 

to keep fault tolerant industrial computing systems in 

operational state as long as possible due to their commercial 

attractiveness. Thus, to accomplish such a goal we need: (1) to 

identify a typical (commercial) configuration of these systems; 

and (2) to analyse systems behaviour at the end of the useful 

period and at the wear-out period of the systems life-time. 

  The rest of this paper is structured as follows. Section 2 

introduces the related work. Section 3 presents analysis of the 

instantaneous failure rate of commercial computing systems at 

the end of their life-time period. On the basis of this analysis, 

we determine the “Red zone” (a critical increase in the system 

failure rate) and the basic condition of its existence. Section 4 

introduces the maintenance scheduling which can help to 

avoid this effect. Finally, conclusion remarks and future 

research directions are given in Section 5. 

II. BACKGROUND 

In the past several decades, maintenance and replacement 

problems have been extensively studied in the literature. The 

most recent systematic survey of maintenance policies for the 

last 50 years is presented by Sarkar et al. [5]. Based on this 

survey, maintenance models can be roughly classified into 

following categories: age replacement policy, block 

replacement policy, periodic preventive maintenance policy, 

failure limit policy, sequential preventive maintenance policy, 

repair cost limit policy, repair time limit policy, repair number 

counting policy, reference time policy, mixed age policy, 

group maintenance policy, opportunistic maintenance policy, 

etc. Each kind of policy has different characteristics, 
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advantages and disadvantages. In this context, this work lies 

in the area of periodic preventive maintenance policy. 

 

 
Fig. 1  Bathtub curve for electronic devices. 

On the other hand, when dealing with maintenance models 

the analysis of the failure rate play a primary role. Generally, 

we can define the instantaneous failure rate as: 
 

h(t)system = h(t)hardware + h(t)software + h(t)operate 
 

h(t)hardware is hardware failure rate (defined by vendors). This 

is a typical bathtub curve for electronic devices (see Fig. 1) 

[6][7][8][9]. In this case the failure rate can be represented by 

the Weibull transformed distribution [7]: 
 

h(t)hardware = λβt
β-1

 
 

if t  Th1 (Burn-in Life-Time Phase)    then 0 < β < 1 

if t  Th2 (Useful Life-Time Phase)      then β = 1 

if t  Th3 (Wear-Out Life-Time Phase) then β > 1 
 

We should mention here environmental influences – 

temperature, humidity, EMI and other [6]. These factors exert 

influence not only on components/units on-the-job, but on 

spare components/units on-the-shelf. Bad storage conditions 

can directly affect hardware failure rates (the stress effect in a 

typical bathtub curve [7]) or even lead to unexpected failure of 

spare components/units in the worst case. 

And based on this representation, we can define the 

“Decision point” (DP) – the critical point of every commercial 

telecommunication project – where the IT department has to 

decide between: 

 starting a new project (buying a new system), 

 buying additional spare components/units, 

 finishing the current project. 

 

h(t)software is embedded software failure rate (defined by 

vendors). The total failure rate for the software can be 

represented as: 
 

h(t)software = h(t)update + h(t)upgrade 

where h(t)update is reliability improvement failure rate; and 

h(t)upgrade is upgrade failure rate. 

The reliability improvement or bug fix software 

modification process occurs as part of regularly scheduled 

software updates. As a consequence, the reliability 

improvement failure rate is closely related to early failures in 

hardware [6][8]. In contrast to the bug fix software 

modifications, vendors are continuously changing embedded 

software to both improve existing functionality and add new 

capabilities. As the software grows and changes, the upgrade 

failure rate will inherently increase due to the increased code 

size and complexity. Thereafter, we have two basic options: 

 Minor code changes (current software release update). 

In this case, the upgrade failure rate affects the total 

(aggregate) failure rate like the stress effect [8]. 

 Global code changes (upgrade to new software release). 

This case leads the total (aggregate) failure rate to the 

beginning of another burn-in period [6][8]. 

An important note – even the total failure rate tends to zero 

value as time becomes large, the processes of code changing 

and code size growth lead computing systems to settle on a 

steady-state (nonzero software failure rate) [8]. 

 

h(t)operate is operator failure rate – erroneous keystrokes, bad 

command sequences, or installing unexpected software [1]. 

III. ANALYSIS OF SYSTEM BEHAVIOUR 

When talking about fault tolerant industrial computing 

systems, we usually mean redundant commercial computing 

systems (we need to state here – specific areas like the 

military, nuclear or aerospace industries are beyond the scope 

this work). In practice these industrial systems are under great 

financial constraint – the main challenge is how to combine a 

real fault tolerance and commercial attractiveness. As a 

consequence, nowadays these systems have modular and/or 

distributed architectures with critical components duplication 

(usually controller/processor and power supply units). 

Additional reliability is provided by the availability of spare 

components or units. The number and composition are defined 

by the project’s budget. The architectural diagram of these 

systems (based on the von Neumann machine representation 

[10]) is shown in Fig. 2. Of course, some vendors provide, 

within extended technical support, operative replacement of 

failure components, but this service has disadvantages: 

 additional expenses – it is very difficult to find strong 

arguments for financial management; 

 response time (especially in developing countries) is 

always longer than having a spare component on-the-

shelf. 

Thus, as the object for analysis we have a system with two 

controller units on-the-job and one spare controller unit on-

the-shelf (see Fig. 2). Controller/processor units are usually 

the most expensive part of every computing systems and it is 

usually impossible to persuade the financial management to 

buy more than one spare unit. 
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Fig. 2  Architectural diagram of redundant commercial computing systems. 

The analysis covers the end of the useful period and the 

wear-out period of the system life-time. In order to simplify 

the analysis, let us make the following assumptions: 

 All three controller units are identical. 

Components/units instantaneous failure rate is: 
 

h(t)controller1 = h(t)controller2 = h(t)controller3 = h(t)controller 

 

 Two main controllers units on-the-job are used during 

their entire life-time periods. The spare controller unit is 

used only if one of the two main controllers fails 

(Interaction Type_1 – see Section 4 “System 

maintenance scheduling”). 

 This standby redundant system has perfect sensing and 

switching subsystems. 

 The IT department is staffed by qualified personnel and 

the system is stable and does not usually require 

operator interventions: 
 

h(t)operate << h(t)hardware 
 

At the end of the useful period industrial computing 

systems generally use “stable” software releases. In this case 

[8]: 

h(t)software << h(t)hardware 
 

Thus, the reliability function is dominated by hardware 

failures and the impact of software failures is minor with 

respect to the system failure rate: 
 

h(t)hardware  h(t)controller 
 

In turn, the components/units life-time period can be 

described by the lognormal distribution [7]. The parameters of 

the distribution: 

 a mean μ – a mean value of components/units life-time; 

 a standard deviation δ – spread of components/units 

life-time 

Therefor the system instantaneous failure rate can be 

represented as: 

 

h(t)system = F(h(t)controller1, h(t)controller2) 

h(t)controller1  h(t)hardware = f(t) 

h(t)controller1  h(t)hardware = f(t + δ) 

f(t) = λβt
β-1

 

 
Fig. 3  Fault-tolerant system behaviour – an arbitrary component/unit failure. 

 
Fig. 4  Fault-tolerant system behaviour – two components/units simultaneous 

failure 

 

 

The following two options describe various scenarios of the 

fault-tolerant system behaviour. 

A. Option 1 – system behaviour in the case of δ >> 0 

In practical terms, this option is the current practice (failed 

components/units replacement) and there is nothing new here 

[7][8][9] – see Fig. 3. 

B. Option 2 – system behaviour in the case of δ  0 

1. If t < T0 (see Fig. 4), then: 

 The first controller unit (Controller_1) is in the Useful 

Life-Time Phase. 

 The second controller unit (Controller_2) is in the 

Useful Life-Time Phase. 

 The third (spare) controller unit (Controller_3) is not 

present. 

Thus 

h(t)controller1 = h(t)controller2 = λ,  β = 1 

And 

h(t)system = F(h(t)controller1, h(t)controller2) = λ/2 
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Fig. 5  Time diagram of controllers’ life-time usages – Interaction Type_1. 

2. If T0 < t < T1 (see Fig. 4), then: 

 The first controller unit (Controller_1) is in the Wear-

Out Life-Time Phase. 

 The second controller unit (Controller_2) is in the 

Wear-Out Life-Time Phase. 

 The third (spare) controller unit (Controller_3) is not 

present. 

Thus 

h(t)controller1 = λβt
β-1

,           β > 1 

h(t)controller2 = λβ(t + δ)
β-1

,  β > 1 

And 

h(t)system = F(h(t)controller1, h(t)controller2) 
 

3. If T1 < t < T2 (see Fig. 4), then: 

 The first controller unit (Controller_1) is not present. 

 The second controller unit (Controller_2) is not present. 

 The third (spare) controller unit (Controller_3) is in the 

Burn-in Life-Time Phase. 

We need to state here: the well-known practice is to burn-in 

components in the lab before putting them on-the-shelf – it 

can help to avoid the worst effect of the Burn-in Life-Time 

Phase. But these lab tests usually last one or two weeks (up to 

four in the best case) while a typical Burn-in Life-Time Phase 

is about 20 weeks [9]. Therefore we cannot completely 

eliminate this period from the analysis. 

Thus 

h(t)controller3 = λβt
β-1

,  0 < β < 1 

And 

h(t)system = F(h(t)controller3) 

 

4. If t > T2 (see Fig. 4), then: 

 The first controller unit (Controller_1) is not present. 

 The second controller unit (Controller_2) is not present. 

 The third (spare) controller unit (Controller_3) is in the 

Useful Life-Time Phase. 

Thus 

h(t)controller3 = λ,  β = 1 

And 

h(t)system = F(h(t)controller3) = λ 
 

Modern industrial technologies provide an effective 

improvement in the stability of production processes. In turn, 

this fact leads to the repeatability of the technical 

characteristic (at least within the same production lot).  And as 

a consequence, we have components/units with a very small 

spread in the components/units life-time (δ  0). Thus, both 

main controllers units on-the-job come up to Wear-out Life-

Time Phase almost simultaneously (with a very small spread). 

But at the same time a spare controller unit on-the-shelf is still 

in Burn-in Life-Time Phase. Therefore, we have a critical 

increase in the system failure probability – the “Red zone” – 

Fig. 3. The basic condition of the “Red zone” existence is the 

parameter ratio: 

δ < Th3 
 

where δ is the spread of components/units life-time; and Th3 

is the duration of Wear-Out Life-Time Phase (see Fig. 4). 
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Fig. 6  Time diagram of controllers’ life-time usages – Interaction Type_2. 

This effect can cause considerable problems for IT 

departments. And in this case the fault tolerant (redundant) 

design only cannot protect against it. 

IV. SYSTEM MAINTENANCE SCHEDULING 

The previous section presents the formal description of the 

effect of a critical increase in the system failure rate. And now 

our main goal is finding the simplest and cheapest solution to 

avoid this effect for existing systems. It is obvious, being 

under continuous financial constraints, that managerial 

procedures (maintenance policy) are the most appropriate way. 

Again our system has two controller units on-the-job and 

one spare controller unit on-the-shelf (see Fig. 2). Fig. 5 and 6 

show the time diagrams of controller units’ life-time usages. 

A. Interaction Type_1 

Fig. 5 presents the “classical” approach – two main 

controller units on-the-job are used for the whole of their life-

time periods. The spare controller unit is used iff one of the 

two main controllers fails.  

Interaction Type_1 characteristic features: 

 In this case we have the potential condition for the “Red 

zone” existence. 

 It is very difficult to determine DP correctly – we can 

use only vendors’ statistics (MTBF) and in the real 

world statistics very often lie. But a mistake in DP 

determination carries reputation risks for IT department 

personnel: 

 too early assessment – in this case an IT department 

will very probably have problems from  financial 

management (unnecessary investment); 

 too late assessment – in this case it is highly probably 

that the system will reach the wear-out period (the 

“Red zone” in the worst case) and only the IT-

department (not financial management) takes full 

responsibility for the consequences. 

 In this case it is very difficult to convince financial 

management of the need for investment in IT 

infrastructure – the system has been working well since 

installation and there are spare critical components/units 

on-the shelf. 

But we need to state here – the real advantage of this case is 

the minimal IT department interference in error-free system 

operations. 

B. Interaction Type_2 

Fig. 6 presents the possible solution based on periodic 

replacement of one of two main controller units and a spare 

controller unit. 

Interaction Type_2 characteristic features: 

 In this case we do not have the potential condition for 

the practical “Red zone”. 

 It is very easy to determine DP – the system is still in 

fault-tolerant mode but there are no longer any spare 
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critical components/units (see Fig. 6). And it is obvious 

that in this case we have a lot of time for the decision 

realization (starting a new project or buying additional 

spare components/units). 

 In this case there is the strong argument for financial 

management – there is nothing on-the-shelf. 

And we need to state here – in this case the system life-time in 

fault-tolerant (redundant) mode is up to 50% longer than the 

system life-time in the first case (Interaction Type_1). 

Potentially it can be used for saving investments in IT 

infrastructures. 

V. CONCLUSIONS 

When talking about fault tolerant industrial computing 

systems, we usually mean redundant commercial computing 

systems (specific areas like the military, nuclear or aerospace 

industries are beyond the scope this work). In practice these 

industrial systems are under great financial constraint. As a 

consequence, they have to remain in operational state as long 

as possible due to their commercial attractiveness. 

In this work we provided the analysis of the instantaneous 

failure rate of commercial redundant computing systems at the 

end of their life-time period. Under certain circumstances the 

repeatability of the technical characteristic can cause a critical 

increase in the system failure rate for redundant systems at 

that time. The fault tolerant (redundant) design cannot protect 

against this challenge (in contrast to The Useful Life-Time 

Phase). In this case, the significant impact on operational 

availability characteristics can be provided by the 

maintenance scheduling. On the basis of the analysis we 

determined the maintenance scheduling which can help (1) to 

avoid this effect; and, as a consequence, (2) to extend the 

system life-time in fault-tolerant (redundant) mode. 
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