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Abstract: We study the geometric features of the 

hexagonal prism and show some designs to be used 

in architectural geometry. Motivated by the 

architecture model built in [1], we propose several 

geometrical designs using the hexagonal prism as 

the basic primitive.  We focus on the geometrical 

patterns of the hexagonal prism,we pursuit to 

identify those patterns that space dictates and 

describe how these patterns are manifested in 

mathematics and in computer graphics.  
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I. INTRODUCTION 

The patterns we find in our buildings, in nature, 

and in our world are dictated by space and are 

identifiable by people. People have taken the 

patterns evident in nature and space and they have 

used them to create homes, offices and parks, among 

others.  

 

In times gone by, single buildings tended to be 

one of three shapes: square, rectangular or round. 

The ground plan still generally follows one of those 

three standards but there are a number that break the 

conventions and go for something a little more 

striking like a hexagon. Noteworthy examples of 

hexagonal buildings can be found in [2]: Fort 

Jefferson  Florida, Berlin Tegel Airport Berlin, 

Langport Workhouse England, Camberra Civic 

Centre Australia, Greensville Correctional Center 

Virginia, New York Supreme Court Building. 

 

Our approach can be described as a guided 

exploration of the hexagonal prism to propose some 

designs to be used in architecture and industrial 

design. Computationally, we represent the hexagonal 

prism of a polygonal mesh and display a set of them 

in specific arrangements that we call pattern designs. 

Our proposal includes the hexagonal prism 

construction by using a circumference filled with 

radii.  

We were inspired by the architecture model built 

in [1] which utilizes hexagonal prisms to represent a 

set of student departments (Figure 1). This model 

was designed in a space of 5895 m
2
 for a little town 

called Xcunya in México. Departments are 

hexagonal prisms and they are arranged in 3 

buildings of 10 hexagonal prisms each. We chose 

this primitive due to the Mayan culture [15], which 

considers the snake’s skin (hexagons) as a base for 

constructing temples. 

 

 

Fig. 1. The architecture model of student 

departments. 

Shape modelling systems often provide the user 

with little support to satisfy constraints implied by 

function and fabrication of the designed product. 

Geometrically, complex architecture is one of the 

areas where an integrated design approach is in high 

demand. Most of the previous work in this field 

deals with the combination of form and fabrication; 

it has already entered a variety of real projects [3]. 

 

The combination of structural analysis and shape 

modelling is probably best studied for self-

supporting masonry. In particular we here refer to 

the thrust network method [4,5], which may be seen 

as a non-conforming finite element discretization of 

the continuous theory of stresses in membranes [6], 

and which is the basis of recent work on the 

interactive computational design of self-supporting 

masonry.  

 

We define hexagonal prism patterns and 

implement the computational program to generate 

the design, which consists of a set of hexagonal 

prisms. We utilize algorithms to create the 

geometrical patterns to represent a design. We start 

creating a hexagonal prism with radiusr, and height 

h placed in the origin. We analyse the geometry of 

hexagonal prism and discuss their flexibility to form 

aesthetic shapes.  
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II. RELATED WORK 

Advances in architectural geometry have made it 

possible for many buildings to be shaped as freeform 

surfaces. There are several challenges in designing 

polyhedral patterns or prism patterns. The usage of 

hexagonal prism in architecture and industrial design 

has been done for years, for instance Glass panels 

and multilayer metal sheets for roofing structures 

[7,9]. 

 

In other work [8] explicit constructions of 

polyhedral patterns that approximate surfaces with 

varying Gaussian curvature are studied. They 

introduce a theoretical study of polyhedral patterns 

that explains their choice of regularizes, which leads 

to an objective function that is neither over- nor 

under-constrained. Our work presents an analysis of 

3D geometric primitive to construct designs 

according to certain patterns. The surface of a prism 

can be decomposed in triangles for meshing 

construction. In the following, we provide an 

analysis of feasible prisms putting together in 

different shapes. 

 

C. Jiang et al. [10] create free form shapes 

composed of hexagonal cells whose faces meet at 

angles close to 120 degrees. They show how to 

compute and design honeycomb structures, discuss 

applications and their limitations. 

 

III.  THE HEXAGONAL PRISM 

The hexagonal prism (hexa) is a prism with 

hexagonal base, 8 faces, 18 edges, and 12 vertices. 

The volume is found by taking the area of the base, 

with a side length of a, and multiplying it by the 

height h: 

 

 

Fig. 2. The Hexagonal Prism and its parameters a, s, 

h [14]. 

 

There are hexagonal prisms to be observed in the 

world around us. Some examples could include a 

pencil (before it is sharpened, of course), a nut, or a 

stone, among many others. The surface area of a 

regular hexagonal prism is two times the area of the 

hexagonal base plus 6 times the area of the rectangle 

face: 6s(a + h), where sis the side length of the base, 

ais the apothem length, and his the height of the 

prism. 

We propose to build a hexa by using a 

circumference whose radii (or rays) can serve as 

vertices.   A circumference is employed to obtain the 

vertices of the hexa. A circumference with centre in 

v0=(0,0,0) and radius r is defined. We need to create 

the vertices starting with v1=(-r, 0, 0). Rotating the 

radius in clock wise order to  degrees we 

obtain v2, and the same procedure is performed for v3, 

v4, v5, v6 (Figure 3). The plane XY isformed with the 

lines from the origin to plane1=(1,0,0) and from the 

origin to plane2=(0,1,0). The vertices can be 

calculated with the next formula, from k=0 

increasing steps, six times:  

plane1.xr cos(kπ) +plane2.xr sin(kπ),    

plane1.yr cos(kπ)+plane2.yr sin(kπ),  

plane1.zr cos(kπ)+plane2.zr sin(kπ)  

 

(a)                                   (b) 

Fig. 3.Circumference’s radii are in red. (a) The first 

seven vertices and the (b) last seven vertices. 

 

As the height is indicated by the zvalue (the depth), 

we require six more vertices. We only extrude the 

hexa in the plane XY to the Z axis to have seven 

more vertices: v0 v7, v1 v8, …, v6 v13. 

 

Therefore, we create the hexa mesh. A mesh M=(V, 

F, E) is formed with V={v0, v1, …, v13}.The first 6 

triangles are formed with the centrev0: f0=<v0, v1, 

v2>, f1=<v0, v2, v3>, f2=<v0, v3, v4>, f3=<v0, v4, v5>, 

f4=<v0, v5, v6>, f5=<v0, v6, v1>. The other six 

polygons are formed with v7: f6=<v7, v9, v8>, … We 

need to create the polygons of the height of the hexa 

by using the vertex’s indices: f12=<9,1,8>, 

f13=<9,2,1>, f14=<10,2,9>, … 

 

The polygons are labelled in counter clock wise 

order. This is important to achieve the right normal 

vectors. A normal vector is formed in each polygon 

using the cross product. Thus the normal vector for 

polygon f0=<v0, v1, v2> isv0v1Gv0v2, which points 

out to allow the reflections of the lights defined in 

the environment. 

IV. THE PATTERN DESIGNS 

 

Contrary to [11] and [12] where operations with 

hexas are commonly constructed by using surfaces, 

we arrange hexas employing affine transformations. 

A vertex P=(PxPyPz 1) can be mapped to another 

point Q=(QxQyQz 1). Transformation operates in P 

and produces Q according to the function T(): 

Q=(QxQyQz1)=T (PxPyPz 1). 
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Designs with translation only 

 

Affine transformations are common in computer 

graphics and allow rotation, scaling, shearing, and 

translation. The Q coordinates are lineal 

combinations of P coordinates. 

Q=(QxQyQz 1) = (m11Px+m12Py+m13Pz+m14   

m21Px+m22Py+m23Pz+m24)for some constants m11, 

m12, …, m23, m24. 
Then we have 

 

 

The translation to be done is indicated by the 

fourth column of the matrix: 

 

 

 

Or simply 

 

 

Algebraically, Q=P+d, where the displacement 

vector d equals (m14 m24 m34). 

 

The first design (Figure 4) consists of the hexas 

placed in columns from left to right, and rows from 

bottom to top. 

Display_Hexa(2(i+1)v4.x, 2 j v2.y, 0), i,j=0,1,…, n 

 

 

Fig. 4. Design 1 is formed with rows of hexas 

arranged vertically. 

 

A variation of Design 1 can be obtained translating 

the hexas in X-axis (Figure 5, Design 2) 

Display_Hexa(2(i+1)v4.x +jv4.x, 2 j v2.y, 0) 

 

 

Fig. 5. Design 2 performs the shearing operation 

tohexas of Design 1. 

 
Another variation (Figure 6, Design 3) is achieved 

by using an X-axis translation: 

Display_Hexa(iv4.x, 2 j v2.y, 0). 

 

 

Fig. 6. Design 3 translates hexas of Design 1to the 

X-axis. 

 

Note in these first three designs, the vertical value is 

the same:  2 j v2.y, and thez value equals zero. 

Another variation by using an X-axis translation is 

achieved (Figure 7, Design 4). We employ the 

circumference values instead to define the hexas 

location. This is similar to the previous Design 3. 

Display_Hexa(2(i+1)rayo3.x + 3 (j+1) rayo2.x, j 

rayo2.y, 0) 

 

 

Fig. 7. Design 4 applies another translation to 

Design 1, but using the rays of the circumference to 

indicate the hexa’s location. 

 

Combining different strips and symmetries leads to a 

large variety of aesthetic results from a single basic 

pattern. We could perform some operations between 

the hexas such as translation in Y-axis, change of 

displaying rays, change of displaying facets, 

coloring, lights, change r and h, smooth the object, 

etc. Observe there is no intersection among hexas in 

Design 1, but in Designs 2,3,4. 

 

The next design is well known and consists on 

placing hexas without intersection, that is, edges are 

adjacent (Figure 8, Design 5). We could use a 

recursive routine to construct such design. 

http://www.ijcttjournal.org/
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Fig. 8. Design 5, hexas without intersection 

simulating a honeycomb structure. 

Starting from an hexa in the origin, the two edges of 

the right are considered to continue the construction. 

Then we call the construction of the hexas from the 

upper edge and the construction of the hexas from 

the lower edge. The routineis recursive and require a 

stop condition, depending on the size of the structure. 

 

Make_Hexa(centroX, centroY) 

Display_Hexa(centroX+v3.x +v4.x, centroY+ v2.y , 0) 

Display_Hexa(centroX+v3.x +v4.x, centroY- v2.y , 0) 

Make_Hexa(centroX+v3.x +v4.x, centroY+ v2.y) 

 

Designs with translation and rotation 

 

Rotations can be performed in any axis or line in the 

space. Fortunately our designs perform rotations in 

X,Y, or Z axis. In 2D, when T()performs a rotation in 

the origin, the displacement vector d equals zero, 

and Q=T(P) is as follows: 

(A1)   Qx=Pxcos - Py sin  

(A2)   Qy=Px sin - Pycos  

 

This results in positive values of  and the angle 

follows a counter clockwise motion. In 2D we can 

represent a rotation in the origin as follows: 

 

 

 

 

Fig. 9. Rotation from P to Q[13]. 

 

Figure 9depicts how to obtain the coordinates 

from a point Q which results to rotate P in the origin 

with angle . If P is located to a distance R from the 

origin with angle , then P=(R cos , R sin  ). Q 

must be at the same distance from P and the angle 

+ . Using trigonometry, we find Q: 

Qx=Pxcos -Pysin( + ) 

Qy=Pxsin -Pycos( + ) 

 

Employingtrigonometryidentities: 

cos( + )=cos cos - sin sin  

sin( + )=sin cos -cos sin  

 

and utilizing Px=R cos , Py=R sin , we obtain 

(A1) and (A2). In matricial form, we have: 

 

 

 

Finally, the matrix multiplication is calculated: 

Q=MP. 

 

Design 6 (Figure 10) employs two hexas for each 

location, the first one remains as original and the 

second one is rotated 90 degrees around theX-axis. 

 

 

Fig. 10. Design 6 adds rotated hexas. 

Making horizontal displacements we obtain 

another similar design (Figure 11, Design 7). 

 

 

Fig. 11. Design 7 with translation and rotated hexas. 

By putting two rotated hexas instead we could 

modify Design 7 (Figure 12, Design 8). 

 

 

Fig. 12. Design 8 by adding rotated hexas. 
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International Journal of Computer Trends and Technology (IJCTT) – Volume 38 Number 1 - August 2016 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 28 

Changing the rotation angle to Y-axis we achieved 

Design 9 (Figure 13). 

 

 

Fig. 13. Design 9, where the rotation is performed in 

the Y-axis. 

V. COMPUTATIONAL ISSUES 

 

An hexa can be represented with 14 vertices and 

24 polygons. Each vertex stores 3 floats of 4 bytes 

each giving 12 bytes per vertex.Thus, 14 vertices x 

12 bytes = 168 bytes. Polygons store 3 integers each, 

making reference to the vertex indices, so that we 

can use unsigned short int of 2 bytes, giving 6 bytes 

per polygon. Then, 6bytes x 24 polygons = 144 

bytes. Therefore, an hexa requires 144 + 168 bytes = 

312 bytes. As we need nxn hexas to represent our 

design, the space complexity equals 

312O(n
2
).Temporal complexity refers to the double 

loop performed to display the hexas: O(n
2
). 

 

We construct and display hexas in an arranged 

manner pursuing aesthetic models,without making 

additional operations. The following step would be 

to convert our line structure to a curve or to a surface 

structure. Computational program was built in C++ 

with OpenGL, requiring minimum sources in 

comparison with the usage of a 3D modelling 

software. 
 

VI. CONCLUSIONS 

We have shown some designs for architectural 

geometry using a basic primitive, the hexagonal 

prism. By joining the hexas using affine 

transformations we can generate a variety of designs 

which can be utilized in architectural modeling or 

industrial design. 

 

Our operations use basic arithmetically 

operationsso that we could arrange the hexas as 

required. A mathematical and computational 

description was made by analyzing the geometrical 

patterns. We demonstrate the temporal and space 

complexity are useful to consider in computational 

processing, in particular for larger projects. 

 

Although our research is primarily inspired by 

architecture, the problem is of relevance in the 

broader context of geometric modeling.  As a future 

work we plan to study free form shapes with other 

kind of prisms for support in architectural 

applications, folding patterns, and timevarying 

polyhedral patterns for shading systems. 
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