
International Journal of Computer Trends and Technology- volume4Issue1- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 39

Implementation of attribute value & faceted value
classification scheme for constructing Reuse

Repository
Gowtham Gajala #1

#Assistant Professor, Department of Information Technology
Kakatiya Institute of Technology & Science,

Warangal, Andhra Pradesh, INDIA - 506015,

Abstract— Software reuse demands that existing components
must be readily incorporated into new products. To be able to
reuse software components, it is necessary to locate the
component that can be reused. Locating components, or even
realizing that they exist, can be quite difficult in a large collection
of components. These components need to be suitably classified
and stored in a repository to enable efficient retrieval. Four
schemes have been previously employed, Free Text, Enumerated,
Attribute Value and Faceted classification. But we try to develop
only with two schemes which are attribute value scheme and
faceted value scheme. This paper titled “Implementation of
attribute value and faceted value classification for constructing
reuse repository” is aimed to develop a classification scheme
which uses an attribute value and faceted value of existing
classification that can be used by people to retrieve the reusable
components. This approach serves as an effective means to
categorize components and to retrieve the relevant components
efficiently to improve retrieval efficiency.

Keywords— Software reuse, repository, attribute, classification
techniques.

I. INTRODUCTION
Software is rarely built completely from scratch. To a great

extent, existing software documents (source code, design
documents, etc.) are copied and adapted to fit new
requirements. Yet we are far from the goal of making reuse
the standard approach to software development.

Software reuse is the process of creating software systems
from existing software rather than building them from scratch.
Software reuse is still an emerging discipline. It appears in
many different forms from ad-hoc reuse to systematic reuse,
and from white-box reuse to black-box reuse. Many different
products for reuse range from ideas and algorithms to any
documents that are created during the software life cycle.
Source code is most commonly reused; thus many people
misconceive software reuse as the reuse of source code alone.
Recently source code and design reuse have become popular
with (object-oriented) class libraries, application frameworks,
and design patterns.

Software components provide a vehicle for planned and
systematic reuse. The software community does not yet agree
on what a software component is exactly. Nowadays, the term
component is used as a synonym for object most of the time,

but it also stands for module or function. Recently the term
component-based or component oriented software
development has become popular. In this context components
are defined as objects plus some-thing. What something is
exactly, or has to be for effective software development,
remains yet to be seen. However, systems and models are
emerging to support that notion.

Systematic software reuse and the reuse of components
influence almost the whole software engineering process
(independent of what a component is). Software process
models were developed to provide guidance in the creation of
high-quality software systems by teams at predictable costs.
The original models were based on the (mis)conception that
systems are built from scratch according to stable
requirements. Software process models have been adapted
since based on experience, and several changes and
improvements have been suggested since the classic waterfall
model. With increasing reuse of software, new models for
software engineering are emerging. New models are based on
systematic reuse of well-defined components that have been
developed in various projects.

Developing software with reuse requires planning for reuse,
developing for reuse and with reuse, and providing
documentation for reuse. The priority of documentation in
software projects has traditionally been low. However, proper
documentation is a necessity for the systematic reuse of
components. If we continue to neglect documentation we will
not be able to increase productivity through the reuse of
components. Detailed information about components is
indispensable.

The ability to develop new applications (In particular Web-
based applications) in a short time is crucial to the success of
software companies that need to compete aggressively in
today’s market. Considering the fact that software
technologies emerge very fast, change on a daily basis, this
becomes an even more complicated task. For this reason it is
vital to share and reuse the knowledge and the programming
experiences in an efficient and productive manner.

Software is rarely built completely from scratch. To a great
extent, existing software documents (source code, design
documents, etc.) are copied and adapted to fit new
requirements. Software reuse is an important area of software

International Journal of Computer Trends and Technology- volume4Issue1- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 40

engineering research that promises significant improvements
in software productivity and quality .Software reuse is the use
of existing software or software knowledge to construct new
software. It is of interest because people want to build systems
that are bigger and more complex, more reliable, less
expensive and that are delivered on time. They have found
traditional software engineering methods inadequate, and feel
that software reuse can provide a better way of doing software
engineering.

There are two basic technical approaches to reuse: Parts-
based and Formal language-based. The parts-based approach
assumes a human programmer integrating software parts into
an application by hand. In the formal language-based
approach, domain knowledge is encoded into an application
generator or a programming language. The research reported
here focuses on the parts-based approach.

Component is a software element that conforms to a
component model and can be independently deployed and
composed without modification according to a composition
standard. General examples of concrete components include
interface, computational, memory, manager, controller
components and Web services. Components may come from
many domains, in many languages and design notations. Also
versions of components may also exist. Due to this large
number of components, we think that a component
management system is needed in order to keep track of the
properties of all the components which are available.

To incorporate reusable components into systems,
programmers must be able to find and understand them. If this
process fails, then reuse cannot happen. Thus, how to index
and represent these components so that they can be found and
understood are two important issues in creating a reuse tool.
Classifying software allows re-users to organize collections of
components into structures that they can search easily.

II. EXISTING TECHNIQUES

A. Free text classification
Free text retrieval performs searches using the text

contained within documents. The retrieval system is typically
based upon a keyword search. All of the document indexes are
searched to try to find an appropriate entry for the required
keyword. The major drawback with this method is the
ambiguous nature of the keywords used. Another
disadvantage is that a search my result in many irrelevant
components. A typical example of free text retrieval is the
‘grep’ utility used by the UNIX manual system. This
type of classification generates large overheads in the
time taken to index the material, and the time taken to
make a query. All the relevant text (usually file headers)
in each of the documents relating to the components are
index, which must then be searched from beginning to end
when a query is made.

B. Enumerated classification
Enumerated classification uses a set of mutually

exclusive classes, which are all within a hierarchy of a

single dimension. A prime illustration of this is the Dewey
Decimal system used to classify books in a library. Each
subject area, for example, Biology, Chemistry etc, has its own
classifying code. As a sub code of this is a specialist
subject area within the main subject. These codes can again
be sub coded by author. This classification method has
advantages and disadvantages pivoted around the concepts
of a unique classification for each item. The classification
scheme will allow a user to find more than one item that is
classified within the same section / subsection assuming that if
more than one exists. For example, there may be more
than one book concerning a given subject, each written by
a different author.

This type of classification schemes is one dimensional,
and will not allow flexible classification of components into
more than one place. As such, enumerated classification by
itself does not provide a good classification scheme for
reusable software components.

C. Attribute value
The attribute value classification scheme uses a set of

attributes to classify a component [6]. For example, a book
has many attributes such as the author, the publisher, a unique
ISBN number and classification code in the Dewey
Decimal system. These are only example of the possible
attributes. Depending upon who wants information about a
book, the attributes could be concerned with the number
of pages, the size of the paper used, the type of print
face, the publishing date, etc. Clearly, the attributes
relating to a book can be:

1) Multidimensional. The book can be classified in
different places using different attributes.

2) Bulky. All possible variations of attributes could
run into many tens, which may not be known at
the time of classification.

Each attribute has the same weighting as the rest, the
implications being that it is very difficult to determine how
close a retrieved component is to the intended requirements,
without visually inspecting the contents.

D. Faceted classification
Faceted classification schemes are attracting the most

attention within the software reuse community. Like the
attribute classification method, various facets classify
components; however, there are usually a lot fewer facets than
there are potential attributes (at most, 7). Ruben Prieto-Diaz
has proposed a faceted scheme that uses six facets. He
proposed three functional and three environmental facets.

1) The Functional Facets are: Function, Objects, and
Medium.

2) The Environmental Facets are: System type,
Functional area, setting.

Each of the facets has to have values assigned at the time
the component is classified. The individual components can
then be uniquely identified by a tuple.

For example: <add, arrays, buffer, database manager,
billing, book store>

International Journal of Computer Trends and Technology- volume4Issue1- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 41

Clearly, it can be seen that each facet is ordered within the
system. The facets furthest to the left of the tuple have the
highest significance, whilst those to the right have a lower
significance to the intended component. When a query is
made for a suitable component, the query will consist of a
tuple similar to the classification one, although certain fields
may be omitted if desired.

For example: <add, arrays, buffer, database manager, *, *>
The most appropriate component can be selected from

those returned since the more of the facets from the left that
match the original query, the better the match will be.

Frakes and Pole conducted an investigation as to the most
favourable of the above classification methods. The
investigation found no statistical evidence of any differences
between the four different classification schemes; however,
the following about each classification method was noted:
 Enumerated classification: Fastest method, difficult to

expand.
 Faceted classification: Easily expandable, most flexible.
 Free text classification: Ambiguous, indexing costs.
 Attribute value classification: Slowest method, no

ordering.

III. PROPOSED SYSTEM
Existing software components for reuse can be directly

classified in the classification scheme into one among the
above specified classifications presented in the previous
section and stored in the reuse repository. Sometimes they
need to be adapted according to the requirements. As
classification scheme relies on one of the techniques discussed
in the previous section which shall inherently affect the
classification efficiency. New designs of software components
for reuse are also subject to classified to classification scheme
before storing them in the reuse repository. User will retrieve
his desired component with required attributes from reuse
repositories. The architecture of proposed system is shown in
the figure1.

Fig.1 Proposed System Architecture

A. Reuse Environment
Reuse environment should include the following elements.

 User: A registered user who want to reuse the
components.

 Library or Repository: Is capable of storing software
components and classification information to allow their
retrieval.

 Retrieval System: Enables client software to retrieve
components and services from library server.

 Matching Details: Is a mechanism carried out in an
effective search for the components.

Fig. 2 Reuse environment

B. Component Classification
The generic term for a passive reusable software item is a

component. Components can consist of, but are not restricted
to ideas, designs, source code, linkable libraries and testing
strategies. The developer needs to specify what components or
type of components they require.

These components then need to be retrieved from a library,
assessed as to their suitability, and modified if required. Once
the developer is satisfied that they have retrieved a suitable
component, it can then be added to the current project under
development. The aim of a ‘good’ component retrieval system
is to be able to locate either the exact component required, or
the closest match, in the shortest amount of time, using a
suitable query. The retrieved component(s) should then be
available for examination and possible selection.

An integrated classification scheme, which employs a
combination of one or more classification techniques, is
proposed and likely to enhance the classification
efficiency. The proposal is described in the following sub
section. This had given rise to development of a software
tool to classify a software component and build reuse
repository.

Integrated classification scheme which combines the
attribute value and faceted classification schemes to classify
components with the following attributes.
 Operating system
 Language
 Keywords
 Inputs
 Outputs
 Domain
 Version
 Category

The attributes when used in query can narrow down
the search space to be used while retrieval.

Existing
technologies

Classification
Scheme

Adapt

New

Reuse
Repository

Retrieval system

User

User

Library or Repository

Matching details

Retrieval

International Journal of Computer Trends and Technology- volume4Issue1- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 42

The proposed software tool will provide an user
friendly interface for browsing, retrieving and inserting
components. Two algorithms are proposed for searching and
inserting components as part of this software tool.

C. Algorithm 1: Component Insert (Component facet and
attributes)

Purpose: This algorithm inserts a component into the
reuse repository with integrated classification scheme
attributes.

Input: Component facet and attributes
Output: Component insertion is success or failure.
Variables: rrp: reuse repository array,

rp: repository pointer,
flag : boolean

if((rrp[i].lang<>lan) and rrp[i].fun>fun) and
(rrp[i].dom<>dom) and (rrp[i].os<>os) and (rrp[i].ip<>ip) and
(rrp[i].op<>op) and (rrp[i].ver<>ver))

i++;
else

flag = true;
break;

if (flag)
rrp[rp].lang = lan;
rrp[rp].fun = fun;
rrp[rp].os = os;
rrp[rp].dom = dom;
rrp[rp].ip = ip;
rrp[rp].op = op;
rrp[rp].ver = ver;
return successful insertion;

else
Component is already exists;

The insert algorithm stores the newly designed or
adapted existing component into the reuse repository.
When component attributes are compared with existing
repository component attributes and determines no similar
components are found then component is inserted
successfully otherwise component not inserted in
repository and exits giving message that component already
exists.

D. Algorithm 2: Search Component (Component facet and
attributes)

Purpose: This algorithm searches for relevant components
with given component facet and attributes from reuse
repository.

Input: Component facet and Component attributes.
Output: list of relevant components
Variables: rrp: reuse repository array

rp: repository pointer
table: result array
i.j : internal variables
flag: boolean

if (component facet <> null)
for (i=1; i <= rp ; i++)
if ((rrp[i].language = lan) and (rrp[i].function = fun))

table[j].lang = rrp[j].lang
table[j].fun = rrp[j].fun
table[j].os = rrp[j].os
table[j].ip = rrp[j].ip
table[j].op = rrp[j].op
j++;

else
flag = 0;

if (component facet<>null) and (any of the other
attributes<> null)

for (i =1;i <= rp ;i++)
if ((rrp[i].lang = lan) and (rrp[i].fun = fun))
if((rrp[i].os = os) or (rrp[i].ip = ip) or (rrp[i].op = op) or

rrp[i].dom = dom) or (rrp[i].ver = ver))
table[j].lang = rrp[i].lang;
table[j].fun = rrp[i].fun;
table[j].os = rrp[i].os;
table[j].dom = rrp[i].dom;
table[j].ip = rrp[i].ip;
table[j].op = rrp[i].op;
table[j].ver = rrp[i].ver;

if(!flag)
No component is matched with given attributes.

IV. RESULTS
The search algorithm accepts component facet and

attribute values from user and retrieves relevant
components from reuse repository.

The proposed software tool is developed by implementing
the following modules.

1) User Interface: The user must be able to insert
and search the components in the reuse
repository. A user friendly interface is designed to
select relevant attributes.

2) Query Formation: The user when desirous of
searching a component may enter some
keywords. He may also select some list of attributes
from the interface. The query formation module
should accept all the keywords entered and form the
query using those keywords.

3) Query Execution: When user sends a query to
retrieve component by query execution on all
the components which satisfy the criteria that is
specified by user in advanced search of user
interface.

4) Formatting Results and Presentation: The results
obtained in the previous module are formatted so
that the user can clearly understand the
functionality of component before choosing one.

The search performance is evaluated with different test
results and compared with existing schemes.

Search effectiveness refers to how well a given method
supports finding relevant items in given database. This may
be number of relevant items retrieved over the total
number of items retrieved.

International Journal of Computer Trends and Technology- volume4Issue1- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 43

Faceted classification scheme marked highest
performance of search among all the existing classification
schemes. Keyword classification scheme registered the
lowest performance. Whereas our proposed integrated
classification scheme out performed to retrieve more relevant
items in comparison to all those existing schemes.

V. CONCLUSION AND FUTURE SCOPE
This paper “Implementation of attribute value & faceted

value classification scheme for constructing reuse repository”
was deeply studied and analyzed to design the code and
implement with various testing methods was done. The
solution developed is free from all the bugs and executable
with all different modules to the utmost satisfaction of the
client.

The main criteria are whenever an admin or a registered
user uploads a component into repository, an auto generated
mail is sent to the admin email so that the admin can update
the (temp) repository along with validation of uploaded
component and to apply a multimedia affect like audio output
for the searched components.

In addition to the retrieval of relevant component, auto
generation of mail and also multimedia effect like audio
output, we can still work on applying more multimedia effects
like adding video output for the searched output so as to make
the registered user more comfortable in selecting and
downloading the searched component.

ACKNOWLEDGMENT
This is my pleasure to express my deep sense of profound

gratitude to my guide Sri P. Niranjan Reddy, Head of
Department of Computer Science & Engineering, Kakatiya
Institute of Technology & Science, Warangal. Under his
guidance and supervision this work has been accomplished.
His keen interest, constant inspiration and constructive
criticism have been of great help to me.

REFERENCES
[1] S.Henninger, “An Evolutionary Approach to Constructing Effective

Software Reuse Repositories”, ACM Transactions on Software
Engineering Methodology, no 2, 1997, pp. 111-150

[2] Ruben Prieto-Diaz, “Implementing Faceted Classification for
Software Reuse”, Communication of the ACM, Vol. 34, No.5, May
1991

[3] Gerald Kotonya, Ian Sommerville and Steve Hall, “Towards A
Classification Model for Component Based Software Engineering
Research”, Proceeding of the of the 29th EUROMICRO Conference
© 2003 IEEE

[4] William B. Frakes and Thomas. P.Pole, “An Empirical Study of
Representation Methods for Reusable Software Components”, IEEE
Transactions on Software Engineering vol.20, no.8, Aug. 1994,
pp.617-630.

[5] Lars Sivert Sorumgard Guttorm Sindre and Frode Stokke,
“Experiences from Application of a Faceted Classification Scheme” ©
1993 IEEE, pp 116-124.

[6] Jeffrey S. Poulin and Kathryn P.Yglesias “Experiences with a
faceted Classification Scheme in a Large Reusable Software
Library (RSL)”, In The Seventh Annual International Computer
Software and Applications Conference (COMPSAC’93), 1993,
pp.90-99

[7] Vicente Ferreira de Lucena Jr., “Facet-Based Classification
Scheme for Industrial Automation Software Components”

[8] Ruben Prieto-Diaz, “Implementing Faceted Classification for
Software Reuse” © 1990 IEEE, pp.300-304

[9] Klement J. Fellner and Klaus Turowski, “Classification
Framework for Business Components”, Proceedings of the 33
rd Hawaii International conference on system Sciences- 2000, 0-
7695-0493-0/00 © 2000 IEEE

[10] Vitharana, Fatemeh, Jain, “Knowledge based repository scheme
for storing and retrieving business components: a theoretical
design and an empirical analysis”, IEEE Transactions on Software
Engineering, vol 29, no. 7, pp, 649-664.

[11] William B.Frakes and Kyo Knag, “Software Reuse Research:
Status and Future”, IEEE transactions on Software Engineering,
VOL.31 NO.7, JULY 2005

[12] R.Prieto-Diaz and P.Freeman, “Classifying Software for Reuse”,
IEEE Software, 1987, Vol.4, No.1, pp.6-16.

[13] Rym Mili, Ali Mili, and Roland T.Mittermeir, “Storing and
Retrieving Software Components a Refinement Based System”,
IEEE Transactions of Software Engineering, 1997, Vol.23, No.7, pp.
445-460

[14] Hafedh Mili, Estelle Ah-Ki, Robert Godin, and Hamid Mcheick,
“Another nail to the coffin of faceted controlled vocabulary
component classification and retrieval”, Proceedings of the 1997
symposium on software reusability (SSR’97), May 1997, Boston USA,
pp.89-98.

[15] Hafedh Mili, Fatma Mili, and Ali Mili, “Reusing Software: Issues
and Research Directions”, IEEE Transactions on Software
Engineering, Vol.21 No.6, June 1995.

[16] Gerald Jones and Ruben Prieto-Diaz, “Building and Managing
Software Libraries”,© 1998 IEEE, pp.228-236.

[17] Prieto-Diaz, Freeman, “Classifying Software for Reuse”, IEEE
Software, vol.4, mo.1, pp.6-16, 1997

[18] Nancy G. Leveson, Kathryn Anne Weis, “Making Embedded
Software Reuse Practical and Safe “12 th ACM SIGSOFT, October,
2004.

[19] William B. Frakes and Kyo Kang, “Software Reuse Research
Status and Future” IEEE transactions on Software Engineering, Vol.
31, No.7, July 2005.

[20] William. B. Frakes and Thomas. P. Pole, “An Empirical Study of
Representation Methods for Reusable Software Components”, IEEE
Transactions on Software Engineering vol. 20, no. 8, Aug. 1994, pp.
617–630.

[21] Lars Sivert Sorumgard, Guttorm Sindre and Frode Stokke,
“Experiences from Application of a Faceted Classification Scheme”
©1993 IEEE, pp 116-124.

[22] William B. Frakes and Kyo Kang, “Software Reuse Research: Status
and Future”, IEEE Transactions on Software Engineering, VOL. 31,
NO. 7, JULY 2005

[23] R. Prieto-Diaz and P. Freeman, “Classifying Software for Reuse”,
IEEE Software, 1987, Vol. 4, No. 1, pp. 6-16.

[24] Rym Mili, Ali Mili, and Roland T. Mittermeir, “Storing and Retrieving
Software Components a Refinement Based System”, IEEE
Transactions of Software Engineering, 1997, Vol. 23, No. 7, pp. 445-
460.

[25] Roger S. Pressman, “Software Engineering A Practitioner’s
Approach”, 5th Edition, Mc-Graw Hill.

[26] .Henninger, “An Evolutionary Approach to Constructing Effective
Software Reuse Repositories”, ACM Transactions on Software
Engineering Methodology, no 2, 1997, pp. 111-150

[27] Ruben Prieto-Diaz, “Implementing Faceted Classification for Software
Reuse”, Communication of the ACM, Vol. 34, No.5, May 1991

[28] Ruben Prieto-Diaz, “Implementing Faceted Classification for Software
Reuse”, © 1990 IEEE, pp.300-304

