
International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 241

Data Storage in Cloud Environment Enhance Privacy
Treesa Maria Vincent#1, J.Sakunthala #2

M.E Student , Anna university Chennai, Thodupuzha, Kerala, India
Assistant Professor(Department of computer Science and Engineering), Anna University Chennai, Erode, India

Abstract— Cloud data have to be encrypted to protect data
privacy, before outsourced to the commercial public cloud. The
encryption process makes effective data utilization service a very
challenging task. Traditional searchable encryption techniques
allow users to securely search over encrypted data through
keywords. They support only Boolean search and are not yet
sufficient to meet the effective data utilization need that is
inherently demanded by large number of users and huge amount
of data files in cloud. The system facilitates server side ranking
without keyword privacy. Search result authentication is
provided in the system. The similarity analysis scheme is used to
identify the query results under the cloud data storage.

Keywords— Encryption, Searchable encryption technique,
Boolean search, Server side ranking, Search result
authentication, Similarity analysis scheme

I. INTRODUCTION
Cloud computing is a long dreamed vision of

computing as a utility, where cloud customers can remotely
store their data into the cloud as to enjoy the on-demand high-
quality application and services from a shared pool of
configurable computing resources [2]. The benefits brought by
this new computing model include but are not limited to: relief
of the burden for storage management, universal data access
with independent geographical locations, and avoidance of
capital expenditure on hardware, software, and personnel
maintenances, etc., [3].

As Cloud Computing becomes prevalent, more and
more sensitive information are being centralized into the cloud,
such as e-mails, personal health records, company finance
data, and government documents, etc. The fact that data
owners and cloud server are no longer in the same trusted
domain may put the outsourced unencrypted data at risk [4]
the cloud server may leak data information to unauthorized
entities [5] or even be hacked [6]. It follows that sensitive data
have to be encrypted prior to outsourcing for data privacy and
combating unsolicited accesses. However, data encryption
makes effective data utilization a very challenging task given
that there could be a large amount of outsourced data files.
Besides, in Cloud Computing, data owners may share their
outsourced data with a large number of users, who might want
to only retrieve certain specific data files they are interested in
during a given session. One of the most popular ways to do so
is through keyword-based search. Such keyword search
technique allows users to selectively retrieve files of interest
and has been widely applied in plaintext search scenarios.
Unfortunately, data encryption, which restricts user’s ability
to perform keyword search and further demands the protection

of keyword privacy, makes the traditional plaintext search
methods fail for encrypted cloud data.

Although traditional searchable encryption schemes
allow a user to securely search over encrypted data through
keywords without first decrypting it, these techniques support
only conventional Boolean keyword search,1 without
capturing any relevance of the files in the search result. When
directly applied in large collaborative data outsourcing cloud
environment, they may suffer from the following two main
drawbacks. On the one hand, for each search request, users
without pre-knowledge of the encrypted cloud data have to go
through every retrieved file in order to find ones most
matching their interest, which demands possibly large amount
of post-processing overhead, On the other hand, invariably
sending back all files solely based on presence/ absence of the
keyword further incurs large unnecessary network traffic,
which is absolutely undesirable in today’s pay-as-you-use
cloud paradigm. In short, lacking of effective mechanisms to
ensure the file retrieval accuracy is a significant drawback of
existing searchable encryption schemes in the context of
Cloud Computing. Nonetheless, the state of the art in
information retrieval (IR) community has already been
utilizing various scoring mechanisms quantify and rank order
the relevance of files in response to any given search query.
Although the importance of ranked search has received
attention for a long history in the context of plaintext
searching by IR community, surprisingly, it is still being
overlooked and remains to be addressed in the context of
encrypted data search.

Therefore, how to enable a searchable encryption
system with support of secure ranked search is the problem
tackled in this paper. Our work is among the first few ones to
explore ranked search over encrypted data in Cloud
Computing. Ranked search greatly enhances system usability
by returning the matching files in a ranked order regarding to
certain relevance criteria, thus making one step closer toward
practical deployment of privacy-preserving data hosting
services in the context of Cloud Computing. To achieve our
design goals on both system security and usability, we
propose to bring together the advance of both crypto and IR
community to design the ranked searchable symmetric
encryption (RSSE) scheme, in the spirit of “as-strong-as-
possible” security guarantee. Specifically, we explore the
statistical measure approach from IR and text mining to
embed weight information of each file during the
establishment of searchable index before outsourcing the
encrypted file collection [12]. As directly outsourcing
relevance scores will leak lots of sensitive frequency
information against the keyword privacy, we then integrate a

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 242

recent crypto primitive order-preserving symmetric encryption
(OPSE) and properly modify it to develop a one-to- many
order-preserving mapping technique for our purpose to protect
those sensitive weight information, while providing efficient
ranked search functionalities. Our contribution can be
summarized as follows:

1. For the first time, we define the problem of secure
ranked keyword search over encrypted cloud data,
and provide such an effective protocol, which fulfills
the secure ranked search functionality with little
relevance score information leakage against keyword
privacy.

2. Thorough security analysis shows that our ranked
searchable symmetric encryption scheme indeed
enjoys “as-strong-as-possible” security guarantee
compared to previous searchable symmetric
encryption (SSE) schemes.

3. We investigate the practical considerations and
enhancements of our ranked search mechanism,
including the efficient support of relevance score
dynamics, the authentication of ranked search results,
and the reversibility of our proposed one-to- many
order-preserving mapping techniques.

4. Extensive experimental results demonstrate the
effectiveness and efficiency of the proposed solution.

II. RELATED WORK

Searchable encryption Traditional searchable
encryption has been widely studied as a cryptographic
primitive, with a focus on security definition formalizations
and efficiency improvements. Song et al. first introduced the
notion of searchable encryption. They proposed a scheme in
the symmetric key setting, where each word in the file is
encrypted independently under a special two-layered
encryption construction. Thus, a searching overhead is linear
to the whole file collection length. Goh developed a Bloom
filter-based per-file index, reducing the workload for each
search request proportional to the number of files in the
collection. Chang and Mitzenmacher also developed a similar
per-file index scheme. To further enhance search efficiency,
Curtmola et al. proposed a per-keyword-based approach,
where a single encrypted hash table index is built for the
entire file collection, with each entry consisting of the
trapdoor of a keyword and an encrypted set of related file
identifiers. Searchable encryption has also been considered in
the public-key setting. Boneh et al. presented the first public-
key-based searchable encryption scheme, with an analogous
scenario. In their construction, anyone with the public key can
write to the data stored on the server but only authorized users
with the private key can search. As an attempt to enrich query
predicates, conjunctive keyword search over encrypted data
have also been proposed. Aiming at tolerance of both minor
typos and format inconsistencies in the user search input,
fuzzy keyword search over encrypted cloud data has been
proposed by Li et al. in [9]. Very recently, a privacy-assured
similarity search mechanism over outsourced cloud data has

been explored by Wang et al. in [11]. Note that all these
schemes support only Boolean keyword search, and none of
them support the ranked search problem which we are
focusing on in this paper.

Following our research on secure ranked search over
encrypted data, very recently, Cao et al. [10] propose a
privacy-preserving multikeyword ranked search scheme,
which extends our previous work in [1] with support of
multikeyword query. They choose the principle of “coordinate
matching,” i.e., as many matches as possible, to capture the
similarity between a multikeyword search query and data
documents, and later quantitatively formalize the principle by
a secure inner product computation mechanism. One
disadvantage of the scheme is that cloud server has to linearly
traverse the whole index of all the documents for each search
request, while ours is as efficient as existing SSE schemes
with only constant search cost on cloud server.

Secure top-k retrieval from Database Community
from database community are the most related work to our
proposed RSSE. The idea of uniformly distributing posting
elements using an order-preserving cryptographic function.
However, the order-preserving mapping function proposed
does not support score dynamics, i.e., any insertion and
updates of the scores in the index will result in the posting list
completely rebuilt. Zerr et al. use a different order-preserving
mapping based on pre-sampling and training of the relevance
scores to be outsourced, which is not as efficient as our
proposed schemes. Besides, when scores following different
distributions need to be inserted, their score transformation
function still needs to be rebuilt. On the contrary, in our
scheme the score dynamics can be gracefully handled, which
is an important benefit inherited from the original OPSE. This
can be observed from the Binary Search(.) procedure in
Algorithm 1, where the same score will always be mapped to
the same random-sized non-overlapping bucket, given the
same encryption key. In other words, the newly changed
scores will not affect previous mapped values. We note that
supporting score dynamics, which can save quite a lot of
computation overhead when file collection changes, is a
significant advantage in our scheme. Moreover, both works
above do not exhibit thorough security analysis which we do
in the paper.
Other related techniques. Allowing range queries over
encrypted data in the public key settings, where advanced
privacy-preserving schemes were proposed to allow more
sophisticated multi-attribute search over encrypted files while
preserving the attributes’ privacy. Though these two schemes
provide provably strong security, they are generally not
efficient in our settings, as for a single search request, a full
scan and expensive computation over the whole encrypted
scores corresponding to the keyword posting list are required.
Moreover, the two schemes do not support the ordered result
listing on the server side. Thus, they cannot be effectively
utilized in our scheme since the user still does not know which
retrieved files would be the most relevant. The transactional
data values are compared and similarity values are estimated.

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 243

The results are prepared using the similarity value and
threshold levels.

III. PROBLEM STATEMENT

A. The System and Threat Model
We consider an encrypted cloud data hosting

service involving three different entities, data owner, data user,
and cloud server. Data owner has a collection of n data files C
= {F1, F2, . . . , Fn} that he wants to outsource on the cloud
server in encrypted form while still keeping the capability to
search through them for effective data utilization reasons. To
do so, before outsourcing, data owner will first build a secure
searchable index I from a set of m distinct keywords W = {w1,
w2, . . . ,wm} extracted from the file collection C, and store
both the index I and the encrypted file collection C on the
cloud server.

We assume the authorization between the data owner
and users is appropriately done. To search the file collection
for a given keyword w, an authorized user generates and
submits a search request in a secret form—a trapdoor Tw of
the keyword w—to the cloud server. Upon receiving the
search request Tw, the cloud server is responsible to search the
index I and return the corresponding set of files to the user.
We consider the secure ranked keyword search problem as
follows: the search result should be returned according to
certain ranked relevance criteria, to improve file retrieval
accuracy for users without prior knowledge on the file
collection C. However, cloud server should learn nothing or
little about the relevance criteria as they exhibit significant
sensitive information against keyword privacy. To reduce
bandwidth, the user may send an optional value k along with
the trapdoor Tw and cloud server only sends back the top-k
most relevant files to the user’s interested keyword w.

We primarily consider an “honest-but-curious”
server in our model, which is consistent with most of the
previous searchable encryption schemes. We assume the cloud
server acts in an “honest” fashion and correctly follows the
designated protocol specification, but is “curious” to infer and
analyze the message flow received during the protocol so as to
learn additional information. In other words, the cloud server
has no intention to actively modify the message flow or
disrupt any other kind of services. However, in some
unexpected events, the cloud server may behave beyond the
“honest-but-curious” model.

B. Design Goals
To enable ranked searchable symmetric encryption

for effective utilization of outsourced and encrypted cloud
data under the aforementioned model, our system design
should achieve the following security and performance
guarantee. Specifically, we have the following goals: 1)
Ranked keyword search: to explore different mechanisms for
designing effective ranked search schemes based on the
existing searchable encryption framework, 2) Security
guarantee: to prevent cloud server from learning the plaintext

of either the data files or the searched keywords, and achieve
the “as-strong-as-possible” security strength compared to
existing searchable encryption schemes, 3) Efficiency: above
goals should be achieved with minimum communication and
computation overhead.

IV. SEARCHABLE ENCRYPTION SCHEME
In the introduction, we have motivated the ranked

keyword search over encrypted data to achieve economies of
scale for Cloud Computing. We start from the review of
existing searchable symmetric encryption schemes and
framework for our proposed ranked searchable symmetric
encryption. Note that by following the same security
guarantee of existing SSE, it would be very inefficient to
support ranked search functionality over encrypted data, as
demonstrated in our basic scheme. The discussion of its
demerits will lead to our proposed scheme.

A. Searchable Symmetric Encryption
Searchable encryption allows data owner to

outsource his data in an encrypted manner while maintaining
the selectively search capability over the encrypted data.
Generally, searchable encryption can be achieved in its full
functionality using an oblivious RAMs. Although hiding
everything during the search from a malicious server, utilizing
oblivious RAM usually brings the cost of logarithmic number
of interactions between the user and the server for each search
request. Thus, in order to achieve more efficient solutions,
almost all the existing works on searchable encryption
literature resort to the weakened security guarantee. Here,
access pattern refers to the outcome of the search result, i.e.,
which files have been retrieved. The search pattern includes
the equality pattern among the two search requests and any
information derived thereafter from this statement.

Having a correct intuition on the security guarantee
of existing SSE literature is very important for us to define our
ranked searchable symmetric encryption problem. As later, we
will show that following the exactly same security guarantee
of existing SSE scheme, it would be very inefficient to
achieve ranked keyword search, which motivates us to further
weaken the security guarantee of existing SSE appropriately
and realize an “as-strong-as-possible” ranked searchable
symmetric encryption. Actually, this notion has been
employed by cryptographers in much recent work [7] where
efficiency is preferred over security.

B. Framework of RSSE System
We follow the similar framework of previously

proposed searchable symmetric encryption schemes and adapt
the framework for our ranked searchable encryption system. A
ranked searchable encryption scheme consists of four
algorithms (KeyGen, BuildIndex, TrapdoorGen, SearchIndex).
Our ranked searchable encryption system can be constructed
from these four algorithms in two phases, Setup and Retrieval:

 Setup. The data owner initializes the public
and secret parameters of the system by executing
Key- Gen, and pre-processes the data file collection

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 244

C by using Build Index to generate the searchable
index from the unique words extracted from C. The
owner then encrypts the data file collection C, and
publishes the index including the keyword
frequency-based relevance scores in some encrypted
form, together with the encrypted collection C to the
Cloud. As part of Setup phase, the data owner also
needs to distribute the necessary secret parameters to
a group of authorized users by employing off-the-
shelf public key cryptography or more efficient
primitive such as broadcast encryption.

 Retrieval. The user uses TrapdoorGen to
generate a secure trapdoor corresponding to his
interested keyword, and submits it to the cloud
server. Upon receiving the trapdoor, the cloud server
will derive a list of matched file IDs and their
corresponding encrypted relevance scores by
searching the index via Search-Index. The matched
files should be sent back in a ranked sequence based
on the relevance scores. However, the server should
learn nothing or little beyond the order of the
relevance scores.

V. EFFICIENT RANKED SEARCHABLE SYMMETRIC
ENCRYPTION SCHEME

 The above straightforward approach demonstrates
the core problem that causes the inefficiency of ranked
searchable encryption. That is how to let server quickly
perform the ranking without actually knowing the relevance
scores. To effectively support ranked search over encrypted
file collection, we now resort to the newly developed
cryptographic primitive—order preserving symmetric
encryption achieve more practical performance. Note that by
resorting to OPSE, our security guarantee of RSSE is
inherently weakened compared to SSE, as we now let server
know the relevance order. However, this is the information we
want to trade off for efficient RSSE. We will first briefly
discuss the primitive of OPSE and its pros and cons. Then, we
show how we can adapt it to suit our purpose for ranked
searchable encryption with an “as-strong-as-possible” security
guarantee. Finally, we demonstrate how to choose different
scheme parameters via concrete examples.

A. Using order Preserving Symmetric Encryption
The OPSE is a deterministic encryption scheme

where the numerical ordering of the plaintexts gets preserved
by the encryption function. Boldyreva et al. gives the first
cryptographic study of OPSE primitive and provides a
construction that is provably secure under the security
framework of pseudorandom function or pseudorandom
permutation. Namely, considering that any order-preserving
function g(.) from domain D = {1, . . .,M} to range R =
{1, . . .,N} can be uniquely defined by a combination of M out
of N ordered items, an OPSE is then said to be secure if and
only if an adversary has to perform a brute force search over
all the possible combinations of M out of N to break the
encryption scheme. If the security level is chosen to be 80 bits,
then it is suggested to choose M = N/2 > 80 so that the total
number of combinations will be greater than 280. Their
construction is based on an uncovered relationship between a
random order-preserving function and the hyper geometric
probability distribution, which will later be denoted as HGD.

At the first glance, by changing the relevance score
encryption from the standard indistinguishable symmetric
encryption scheme to this OPSE, it seems to follow directly
that efficient relevance score ranking can be achieved just like
in the plaintext domain. However, as pointed out earlier, the

OPSE is a deterministic encryption scheme. This inherent
deterministic property, if not treated appropriately, will still
leak a lot of information as any deterministic encryption
scheme will do. One such information leakage is the plaintext
distribution. For example, which shows a skewed relevance
score distribution of keyword “network,” sampled from 1,000
files of our test collection. For easy exposition, we encode the
actual score into 128 levels in domain from 1 to 128. Due to
the deterministic property, if we use OPSE directly over these
sampled relevance scores, the resulting ciphertext shall share
exactly the same distribution as the relevance score.
Specifically, the authors have shown that the TF distribution
of certain keywords from the Enron e-mail corpus3 can be
very peaky, and thus result in significant information leak for
the corresponding keyword. In [8], the authors further point
out that the TF distribution of the keyword in a given file
collection usually follows a power law distribution, regardless
of the popularity of the keyword. Their results on a few test
file collections show that not only different keywords can be
differentiated by the slope and value range of their TF
distribution, but even the normalized TF distributions, i.e., the
original score distributions can be keyword specific. Thus,
with certain background information on the file collection,
such as knowing it contains only technical research papers, the
adversary may be able to reverse engineer the keyword
“network” directly from the encrypted score distribution
without actually breaking the trapdoor construction, nor does
the adversary need to break the OPSE.

B. One-to-Many Order-Preserving Mapping
Therefore, we have to modify the OPSE to suit our

purpose. In order to reduce the amount of information leakage
from the deterministic property, an one-to-many OPSE
scheme is thus desired, which can flatten or obfuscate the
original relevance score distribution, increase its randomness,
and still preserve the plaintext order. To do so, we first briefly
review the encryption process of original deterministic OPSE,
where a plaintext m in domain D is always mapped to the
same random-sized nonoverlapping interval bucket in range R,
determined by a keyed binary search over the range R and the
result of a random HGD sampling function. A ciphertext c is
then chosen within the bucket by using m as the seed for some
random selection function.

Our one-to-many order-preserving mapping employs
the random plaintext-to-bucket mapping of OPSE, but
incorporates the unique file IDs together with the plaintext m

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 245

as the random seed in the final ciphertext chosen process. Due
to the use of unique file ID as part of random selection seed,
the same plaintext m will no longer be deterministically
assigned to the same cipher text c, but instead a random value
within the randomly assigned bucket in rangeR. The whole
process is shown in Algorithm 1. Here, TapeGen(.) is a
random coin generator and HYGEINV(.) is the efficient
function implemented in Matlab as our instance for the HGD(.)
sampling function. The correctness of our one-to-many order-
preserving mapping follows directly from the Algorithm 1.
Note that our rational is to use the OPSE block cipher as a tool
for different application scenarios and achieve better security,
which is suggested by and consistent. Now, if we denote OPM
as our one-to-many order-preserving mapping function with
parameter: OPM: {0, 1}l * {0, 1}log |D| {0, 1}log |R|, our
proposed RSSE scheme can be described as follows:

In the Setup phase
1. The data owner calls KeyGen(1k, 1l, 1l` , 1p, |D|, |R|),

generates random keys x, y, z
ோ
← {0, 1}k, and

outputs K = {x, y, z, 1l,1l` , 1p, |D|, |R|}.
2. The data owner calls BuildIndex(K, C) to build the

inverted index of collection C, and uses OPMfz(wi)(.)
instead of E(.) to encrypt the scores.

In the Retrieval phase
1. The user generates and sends a trapdoor Tw =

(x(w), fy(w)) for an interested keyword w. Upon
receiving the trapdoor Tw, the cloud server first
locates the matching entries of the index via x(w),
and then uses fy(w) to decrypt the entry. These are
the same with basic approach.

2. The cloud server now sees the file identifiers <id(Fij)>
and their associated order-preserved encrypted
scores: OPMfz(wi)(Sij).

3. The server then fetches the files and sends back
them in a ranked sequence according to the
encrypted relevance scores {OPMfz(wi)(Sij)}, or
sends top-k most relevant files if the optional value
k is provided.

Algorithm 1. One-To-Many Order-Preserving Mapping-Opm

1: procedure OPMK(D,R,m, id(F))
2: while |D|! = 1 do
3: {D,R} BinarySearch (K,D,R,m);
4: end while

5: coin
ோ
← TapeGen(K, (D,R, 1||m, id(F)));

6: c
ୡ୭୧୬
ር⎯ሲ R;

7: return c;
8: end procedure
9: procedure BinarySearch(K,D,R,m);
10: M |D|, N |R|;
11: d min(D) - 1, r min(R) – 1;
12: y r + ⌈ܰ/2⌉ ;

13: coin
ோ
← TapeGen(K, (D,R, 0||y));

14: x
ோ
← d + HYGEINV(coin,M,N, y - r);

15: if m ≤ x then
16: D {d + 1, . . . , x};
17: R {r + 1, . . . , y};
18: else
19: D {x + 1, . . . , d+M};
20: R {y + 1, . . . , r + N};
21: end if
22: return {D, R},
23: end procedure

VI. SECURITY AND PRIVACY ENSURED DATA SEARCH MODEL
FOR ENCRYPTED STORAGE

 The cloud data center manages the transactional data
values. The data values are maintained in encrypted format.
The data values are queried using the encrypted query values.
The system is designed to provide data security and privacy
for the transactional data over the cloud environment. The
order preserving mapping model is used for the encryption
process. The score functions are used to fetch the data values
in a ranked manner. The dynamic scoring mechanism is used
in the system.

Figure.1: Encrypted Search Model

 The system is divided into two applications. They are
data source and client application. The data source manages
the transactional data values. The client application issues the
query value and collects the data from the data source. The
data values are updated in the data source in an encrypted
format. The data retrieval and ranking operations are carried

Simila
rity

Clou
d

Query
proces

Data

Data File

Estima

Index

Data Data

Use

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 246

out on the encrypted data format only. The system secures the
data under the storage and query transmission process.
 The system is divided into five major modules. They
are data source, storage management, score assignment, client
and query process. The data source module is designed to
manage the data values. The storage management module is
designed to perform the data encryption and update operations.
The score assignment module is used to assign the relevance
score the for the transactional data values. The client
application is used to fetch the data value from the data source.
The query process module is designed to submit and collect
the data values.

A. Data source
The data source application is designed to manage

the transactional and user information. The user information
are updated with their access information. All the query
history is maintained under the data source application. The
transactional data values are maintained for different domains.
The data values are updated in encrypted format. The data
retrieval is performed under the data source application.

B. Storage Management
 The storage management is designed to handle data
encryption and update operations. The order preserving
mapping technique is used to encrypt the data values. The
system includes the reversible order preserving map model for
the encryption process. The data update operation can be
dynamically performed on the system. The data values are
updated and stored in the encrypted format. The transactional
data and its encryption process are carried out under the data
source environment.

C. Client
 The client application is designed to perform the data
retrieval operations. The data values are collected from the
server and updated into the client interface. Each client is
authenticated with unique identification value. The client
collects the data values with query keywords.

VII. CONCLUSIONS
 Cloud customers can remotely store their data on a
shared pool of configurable computing resources in cloud.
Searchable Symmetric Encryption scheme is used to provide
storage and retrieval security. Order Preserving Symmetric
Encryption scheme is enhanced in reversible mechanism. The
system is improved with result authentication and similarity
based ranking model. The data storage and search process is
carried out with encrypted query model. The system performs
index operations on encrypted data values. The system also
secures the search results. The system supports incremental
data update scheme.

ACKNOWLEDGMENT
I express my sincere thanks to Mrs.J.Sakunthala ME,

Assistant professor, Department of Computer Science and
Engineering (PG), who has always been with me throughout

the process of design and construction of this paper. I am very
much thankful for her guidance, constant encouragement,
support and valuable suggestions to successfully carryout this
paper.

REFERENCES

[1] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure
Ranked Keyword Search over Encrypted Cloud Data,” Proc.
IEEE 30th Int’l Conf. Distributed Computing Systems
(ICDCS ’10), 2010.
[2] P. Mell and T. Grance, “Draft Nist Working Definition of
Cloud Computing,”
http://csrc.nist.gov/groups/SNS/cloudcomputing/ index.html,
Jan. 2010.
[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz,
A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the Clouds: A Berkeley View of
Cloud Computing,” Technical Report UCB-EECS-2009-28,
Univ. of California, Berkeley, Feb. 2009.
[4] Cloud Security Alliance “Security Guidance for Critical
Areas of Focus in Cloud Computing,”
http://www.cloudsecurityalliance.org, 2009.
[5] Z. Slocum, “Your Google Docs: Soon in Search Results?”
http://news.cnet.com/8301-17939_109-10357137-2.html,
2009.
[6] B. Krebs, “Payment Processor Breach May Be Largest
Ever,”
http://voices.washingtonpost.com/securityfix/2009/01/paymen
t_processor_breach_may_b.html, Jan. 2009.
[7] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill,
“Order-Preserving Symmetric Encryption,” Proc. Int’l Conf.
Advances in Cryptology, 2009.
[8] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski,
“Zerber+r: Top-k Retrieval from a Confidential Index,” Proc.
Int’l Conf. Extending Database Technology: Advances in
Database Technology (EDBT ’09), 2009.
[9] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou,
“Fuzzy Keyword Search over Encrypted Data in Cloud
Computing,” Proc. IEEE Infocom ’10, 2010.
[10] N. Cao, C. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Multi-Keyword Ranked Search over Encrypted
Cloud Data,” Proc. IEEE Infocom ’11, 2011.
[11] C. Wang, K. Ren, S. Yu, K. Mahendra, and R. Urs,
“Achieving Usable and Privacy-Assured Similarity Search
over Outsourced Cloud Data,” Proc. IEEE INFOCOM, 2012.
[12] Cong Wang, Ning Cao, Kui Ren and Wenjing Lou,
“Enabling Secure and Efficient Ranked Keyword Search over
Outsourced Cloud Data” IEEE Transactions On Parallel And
Distributed Systems, Vol. 23, No. 8, August 2012.

