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ABSTRACT— The objective of Software Engineering is to 
develop software product effectively. Software services are 
too complex and it has many capabilities, each 
corresponding to a business level concept. Customer 
requires a service that exploits only a fraction of the 
service’s capabilities. Each capability uses many different 
software functions that cause demands on distributed or 
multitier set of resources such as CPUs. 

The results of these predictions will help the 
schedulers to improve the allocation of resources to the 
different tasks. The technique is used to support system 
sizing and capacity planning exercises, costing and pricing 
exercises, and to predict the impact of changes to a service 
upon different service customers. In this paper, we present a 
framework which uses semantically enhanced historical data 
for predicting the behavior of tasks and resources in the 
system, and allocating the resources according to these 
predictions. 
 
Keywords — Benchmarking, Linearity, 
Multicollinearity, Resource Demand Estimation, 
Statistical Regression.  

I. INTRODUCTION 
When running a small business, it is 

important to have an idea of what you should expect 
in the way of sales. To estimate how many sales a 
company will make, demand estimation is a process 
that is commonly used. With demand estimation, a 
company can gauge how much to produce and make 
other important decisions. Demand estimation is a 
process that involves coming up with an estimate of 
the amount of demand for a product or service. The 
estimate of demand is typically confined to a 
particular period of time, such as a month, quarter or 
year. While this is definitely not a way to predict the 
future for your business, it can be used to come up 
with fairly accurate estimates if the assumptions made 
are correct. 
  

In the absence of centralized control, such 
behaviors’ may be self-reinforcing, leading to a rapid 
degradation of system performance. A major 
challenge within open markets is the ability to satisfy 
service demand with an adequate supply of service 

providers, especially when such demand may be 
volatile due to changing requirements or fluctuations 
in the availability of services. Ideally, this supply and 
demand should be balanced; however, when consumer 
demand changes over time, and providers 
independently choose which services they provide, a 
coordination problem known as ‘herding’ can arise 
bringing instability to the market. This behavior can 
emerge when consumers share similar preferences for 
the same providers, and thus compete for the same 
resources. Likewise, providers which share estimates 
of fluctuating demand may respond in unison, 
withdrawing some services to introduce others, and 
thus oscillate the available supply around some ideal 
equilibrium. One approach to avoid this unstable 
behavior is to limit the flow of information between 
agents, such that they possess an incomplete and 
subjective view of the local service availability. A 
model called Demand Estimation with Confidence 
(DEC) requires the preparation and execution of a 
number of benchmarks under controlled conditions. A 
benchmark submits a semantically correct sequence of 
requests to a system under study. Resource demands 
are measured for each benchmark separately. 

DEC enables a measurement-based test that 
can be used to validate demand estimates as well as 
ascertain whether a given service would achieve its 
performance requirements when executed on a target 
platform. Together these characteristics of DEC can 
help service providers assess the risks of providing 
services to new customers based on customer-specific 
workloads 

II. METHODOLOGY 
 

A. DEC-BASIC Method 
This section provides a brief summary of the 

method used within DEC-BASIC to compute a linear 
combination vector L for a subset of benchmarks. As 
stated previously, demand prediction problem a ratio 
computation technique that devised previously to 
support synthetic workload generation. Although the 
modifications required relative to the previous work 
were fairly straightforward, the technique described 
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here for the sake of clarity and completeness. Let the 
product FX, correspond to a customer’s desired use of 
a system’s functions. The problem of computing L is 
to determine a linear combination of a subset of the B 
benchmarks that results in FX. In other words, let A* 
be a M×K matrix containing function execution 
counts vectors for K benchmarks, K ≤ B, upon the M 
functions. The K rows of L represent benchmark 
execution counts for the benchmarks corresponding to 
the function counts vectors of A*. If the chosen 
benchmarks were run with these benchmark execution 
counts, the resulting function counts would be FX. 
The problem of computing the linear combination 
vector L is to determine an A*and L such that the 
following conditions are satisfied: 

                    
A*L = FX, 

                                                       (1) 
L(l) ≥ 0 ∀	l. 

 
Above equation specifies that the function 

counts achieved by combining the benchmarks in A* 
according to the benchmark counts in L should equal 
the desired function counts given by FX. Equation 
restricts the computed benchmark counts to be 
nonnegative values. To solve the problem, an 
algorithm is devised which iteratively determines the 
A* matrix and the L vector that satisfy the conditions 
given. Fig provides a high-level overview of the 
algorithm. The steps of the algorithm are as follows: 

 
1. To begin, an initial A* matrix is 

determined by identifying a small subset of the B 
benchmarks. This relies on the computation of an 
algebraic basis set for the B benchmarks. The 
algebraic basis set has the property that a benchmark 
not belonging to the set can be synthesized as a linear 
combination of benchmarks in the set with respect to 
its function execution counts. In effect, the basis set 
contains benchmarks that are distinct from one another 
in terms of their function execution counts. MATLAB 
rref function used to compute the algebraic basis. 

2. At each step of the iteration of DEC-
BASIC, linear programming is used to find a value of 
L for a given A* such that the difference between the 
desired function counts FX and the achieved function 
counts A*L is minimized. Equation forms one of the 
constraints of the LP problem. The second constraint 
is obtained by relaxing the condition specified to that 
given by 

    
                           A*L ≤ FX.                           (2) 
 

This change facilitates an iterative solution 
by which A* is progressively modified by adding more 
benchmarks to the initial basis set until an L that 
satisfies the stricter constraint given, i.e., 
corresponding to a better match between FX and A*L 
is found. MATLAB linprog function is used for 

solving the LP problem. The detailed LP formulation 
is presented in the Appendix. 

3. The difference between the desired 
function counts and the achieved function counts is 
calculated as an M1 slack vector E ¼ FX * A*L. The 
algorithm terminates if the mismatches in function 
execution counts (given by the elements of E) are less 
than or equal to user-specified mismatch thresholds 
for function execution counts. By default, as shown in 
Fig, the mismatch thresholds are zero signifying a 
desire to achieve an exact match of FX. However, 
thresholds can be specified to indicate that certain 
functions, e.g., those that are resource intensive, need 
to be matched more closely than others. The algorithm 
also terminates if a user-specified maximum number 
of iterations is reached or if all available benchmarks 
have been used to synthesize FX. 

4. If the algorithm does not terminate in step 
3, then the benchmark that offsets E the most is 
identified from the remaining benchmarks in B that 
are not part of A*. The new benchmark to be selected 
is determined by computing the Euclidean distances 
between E and the function execution counts vectors 
of the remaining benchmarks. The function execution 
counts vector that yields the minimum distance is 
selected and appended to A* as an additional column. 
This is followed by another iteration of the algorithm. 
The algorithm is guaranteed to terminate when the 
goal is to match a workload mix of functions that 
results from the B benchmarks. This is because, in the 
worst case, all B benchmarks will be included to 
achieve the match. When an exact match of mix is not 
possible with a given set of benchmarks, DEC can be 
instructed to match certain functions, e.g., resource 
intensive functions, more closely than other functions. 
Specifically, by relaxing the requirements for a certain 
set of functions one can obtain more exact matches for 
the other functions not in this set. The next section 
describes a new method, named DECITERATIVE, 
which automates such a process. 

 
DEC-BASIC ALGORITHM 

 
1. Create algebraic basis set of k benchmarks 

from B available benchmarks. 
2. Form A* matrix in dimension M x K 

corresponding to basis set. 
3. The difference between the desired function 

counts and the achieved function counts is 
calculated to solve LP problem to obtain L 
that minimizes F X – A*L. 

4. Check A*L= = FX or K= = B 
5. The algorithm terminates if the mismatches 

in function execution counts are less than or 
equal to user-specified mismatch thresholds 
for function execution counts. 

6. If the algorithm does not terminate then 
select a benchmark which is not in the basis 
set with best offsets F X – A*L. 
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7. Add selected benchmark to basis set and 
form A* matrix of the new set. 

8. After that reflect the size of new set. Then 
increase the value of k by 1  

9. Then repeat the process to solve LP problem 
by Go to step:5 

 
B. DEC-ITERATIVE Method 

 
The main idea behind DEC-ITERATIVE is 

to aggregate functions together when an exact match 
of mix is not possible. Several different criteria could 
be used to decide which functions need to be 
aggregated. Aggregating functions based on their 
impact on system performance. Specifically, functions 
are ranked based on performance impact. This can, for 
example, be achieved by observing the per-function 
mean response times for the M functions when the 
suite of B benchmarks is executed against the system 
under study. Alternatively, functions could be ranked 
based on the per-function demands as estimated by 
regression. The ranking is based on response times for 
the following discussion. Let the function with the 
highest mean response time be assigned a rank of 1 
while the function with the lowest mean response time 
is assigned a rank of M. When an exact match is not 
possible, the two least resource intensive, i.e., least 
ranked functions are combined together. The 
execution count for this combined function is set to be 
the sum of the execution counts of its two component 
functions. 

 
DECBASIC is then invoked to match for a 

mix expressed in terms of the counts for the non-
aggregated functions and the count for the newly 
combined function. The process of aggregation is 
repeated if an exact match of this mix is not achieved. 
With such an approach the dimension of the mix is 
iteratively reduced by 1 from its initial value of M till 
DEC-BASIC reports exact matches with respect to the 
re dimensioned mix or till M - 1 function have been 
aggregated. In effect, the aggregation process 
iteratively lumps functions with similar demands 
together starting from the least resource intensive 
functions. Fig. provides a more formal overview of the 
process. Assume that G is an M - 1 matrix obtained by 
sorting FX according to the performance impact of the 
M functions. Specifically, the ith row of G represents 
the function execution counts of the ith most resource 
intensive function. Let A be an M ×B matrix 
containing function execution counts vectors for the B 
available benchmarks upon the M functions such that 
Aij represents the number of times benchmark i 
invokes the jth most resource intensive function. Let p 
represent the dimension of the function space 
currently under consideration. As shown in step 1 of 
Fig. 2, it is initialized to M. In step 2 of Fig, DEC-
BASIC is invoked with A and G to obtain A* and L as 
described. As shown in Fig., the algorithm terminates 
if A*L = G or if further aggregation of functions is not 

possible. Otherwise, the dimension of the function 
space is reduced by 1 as shown in steps 3 and 4 of Fig. 
In step 3, the pth row of G is added to the (p-1)th row 
of G and the pth row is then set to zero. This represents 
the aggregation of the two least resource intensive 
functions in the current set of functions. Step 4 shows 
the same aggregation operation performed on A. Step 
5 updates p to reflect the reduction in the dimension of 
the function space. This is followed by a re invoking 
of DEC-BASIC with the new values of A and G. 
DEC-ITERATIVE has a maximum number of M- 1 
iterations. The first iteration of the method is 
essentially the same as DEC-BASIC, which includes 
all the functions offered by the system. At the nth 
iteration, the n least resource intensive functions are 
aggregated as one function. Note that, as with DEC-
BASIC, DEC-ITERATIVE is not guaranteed to 
provide an exact solution. If by the end of the M - 1 
iteration, the method was not able to provide a 
solution while satisfying the constraints, the L 
computed in the last iteration is reported as the final 
solution from DECITERATIVE. 

 
DECITERATIVE can improve on the predictive 

accuracy of DEC-BASIC for cases where the latter 
technique could not achieve an exact match of the 
desired workload ix. In particular, aggregating 
functions with low resource demands allows the 
algorithm to discover solutions where the more 
resource intensive functions are matched better 
thereby resulting in improved accuracy. It must be 
noted that DEC-ITERATIVE differs from other 
techniques, which employ function aggregation. In 
effect, DEC-ITERATIVE attempts to first find the 
best possible match, but incrementally relaxes the 
degree of match when an exact match is not possible. 
To the best of our knowledge, other techniques do not 
support such a systematic and automated technique to 
aggregate functions. 
 
DEC-ITERATIVE ALGORITHM 

1. Initialize dimension of function space p=M 
2. Invoke DEC-BASIC  in which [A*, L]= 

INVOKE_DEC_BASIC(A,G) 
3. Check whether A*L = = G or p=2. 
4. If the above condition is satisfied discard the 

process. 
5. Else aggregate 2 least resource intensive 

functions in G by initialising Gp,1 = 0 and Gp-

1,1  = Gp-1,1  +  Gp,1 
6. Aggregate 2 least resource intensive 

functions in A by initialising Ai,p = 0 and Ai,p-

1 = Ai,p-1 + Ai,p 
7. After completing the process reduce 

dimension of function space with p=p-1 
8. Then Goto step:2 

III. THE FRAMEWORK 
 

A. Demand Parameters Estimation 



International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –
April 2013  
 

ISSN: 2231-2803    http://www.ijcttjournal.org  Page 534 
 

 
Asymptotic normal approximations was 

developed to the impact of demand parameter 
uncertainty on the service level variance, and discuss 
the distributional characteristics of the product 
demands, the critical fractile, and the length of the 
historical demand data for which it is critical to 
capture demand parameter uncertainty.  This section 
describes two variants of the DEC technique. DEC-
BASIC variant that determines a linear combination of 
benchmarks to match a desired mix of system 
functions. An extension called DEC-ITERATIVE that 
handles in an automated manner scenarios where an 
exact match of a desired mix is not possible with the 
available set of benchmarks. A way of capturing the 
demand parameter uncertainty in the inventory 
simulation is to use a Bayesian model that samples the 
demand parameters from their Bayesian posterior 
density functions before each simulation replication. 
There exists well-established literature on Bayesian 
probability theory for representing the uncertainty 
around the parameters of the standard families of 
distributions (Gelman et al. 2000). Assuming the 
availability of limited historical demand data, this 
literature is used to obtain an asymptotic variance 
approximation for the demand parameter uncertainty. 
For the demand random variable X having the normal 
distribution with mean µ and variance σ 2, the 
likelihood function of the available historical demand 
data xt, t=1, 2, . . . ,n is given by 

 
,ଵݔ)݂ ,ଶݔ … (ଶߪ,|µ	ݔ, = ଵ

(ଶమ)/మ exp ቄ− ଵ
ଶమ

∑ ௧ݔ) − ଶ୬(ߤ	
୲ୀଵ }     (3) 

 

 
 

Using a normal prior density function with mean µ0 

and variance  for the mean µ conditional on 
the variance σ2, i.e, 

 
µ|	ߪଶ ∝ ଵ

(మ)భ/మ exp ቄ− బ
ଶమ

௧ݔ) −  ଶ}                (4)(ߤ	
 
 
and an inverse gamma prior density 

function with shape parameter and  scale 
parameter  for the variance σ2, i.e., 

 

ଶߪ ∝ ଵ
(మ)(ೡబశమ)/మ exp ൜− Ϛమబ

ଶమ
ൠ                            (5) 

Obtain a joint conjugate prior density 
function, п(μ,σ2) for the demand parameters μ and σ2: 

 
 

(ଶߪ,µ)ߨ ∝ ଵ

(మ)
ೡబశయ
మ

exp ቄ− ଵ
ଶమ
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B. The Historical Data Repository (HDR) 

 

The HDR is a flexible, generic component 
implemented by SZTAKI to provide facilities for log 
data collection and on-demand predictions. The HDR 
is implemented in Java and can be embedded into Java 
code or can be run as a separate Web Service. In both 
cases, other software components can send their log 
data to the HDR, either by our customizable client 
APIs or via direct calls. Incoming information must be 
in the format of RDF [9], based on the core ontologies 
available to all components. The conversion to RDF 
can be implemented in client APIs if necessary. Thus, 
in our scenario, the service collects and stores 
information about past events (i.e., job executions and 
resource usage), and provides mining and searching 
for these mentioned past events. The collected status 
information is stored as RDF inside the HDR. The 
repository can then be used for extracting statistics- 
and knowledge-based information or predictions. 

For example, a predictor can build a 
classification model on top of the results of a semantic 
query. The classifier can then be used to provide 
predictions based on the past. In our specific scenario, 
the HDR is loaded with the description of the executed 
jobs, their resource usage and the resource downtimes. 
This data is used to train the classifier in order to 
provide estimations on the probabilities of delays in 
the schedule and problems with the job completion 
and estimations on the reliability of the used resources. 
As the statistical model is periodically updated, the 
provided values dynamically reflect the experiences of 
the recently finished executions. 

Benchmarking is the process of 
comparing one's demand estimation processes and 
performance metrics to industry bests or best practices 
from other industries. Dimensions typically measured 
are quality, time and cost. In the process of 
benchmarking, management identifies the best firms 
in their estimated demand, or in another estimation 
where similar processes exist, and compare the results 
and processes of those studied (the "targets") to one's 
own results and processes. In this way, here learn how 
well the targets perform and, more importantly, the 
business processes that explain why these firms are 
successful. 

 
C. Semantic Resource Allocation Process 

 
In this case, we require ontology for 

modeling the system entities such as customers, 
service providers, jobs and resources and other 
important data such as resource allocation data for job 
scheduling and historical data for making predictions. 
SVM analyze data in ontology and used for 
classification. i.e. the SVM makes the possible classes 
from the requirement. From the possible classes, the 
resources were allocated to the application.  

IV. PERFORMANCE EVALUATION 
 



International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –
April 2013  
 

ISSN: 2231-2803    http://www.ijcttjournal.org  Page 535 
 

 To evaluate the efficiency, we measure the 
CPU time of the process. 
 
A. PERFORMANCE COMPARISION 

 

 

Figure 1: Performance Comparison 

B. DEMAND VALUES 

Demand Values shown below are estimated 
and expected demand value’s based on the CPU time. 

TABLE 1 
 

DEMAND VALUES 
 

 

V. CONCLUSIONS 
 

Demand Estimation with Confidence (DEC) 
is a technique for estimating the resource demands of 
services that are implemented by multitier systems. A 
customer workload mix was expressed as a linear 
combination of a subset of existing benchmarks. This 
technique predicted the aggregate resource demands 
of new workload mixes directly. Linear combination 
weights for the benchmarks were used along with the 
measured demands of those benchmarks for offering a 
demand estimate for the specified mix.  

We present a generic approach and a re-usable 
solution for the collection and exploitation of 
historical log data produced by services. The 
heterogeneity of log data arriving from various 

resources calls for a semantic data representation, 
which can facilitate the unification of these data and a 
query mechanism supported by inference. Our 
approach demonstrates the coupling of semantic data 
processing with data mining as a promising novel 
combination. 
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Functions Estimated Value Expected Value 
20 3 8 
40 6 8.3333 
60 9 8 
35 5 7.33333 
30 4 6 
46 6 4.33333 
70 10 5.33333 
78 11 9.333333 


