
International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 531

An Investigation on Estimating Demand Data and
Semantic Resource Allocation

S.Ranjithkumar #1, Dr J.Selvakumar *2

#1PG Scholar ME-Software Engineering Final yea, Sri Ramakrishna Engineering College
Coimbatore, Tamil Nadu, India

*2 Associated Professor,
Sri Ramakrishna Engineering College Coimbatore, Tamil Nadu, India.

ABSTRACT— The objective of Software Engineering is to
develop software product effectively. Software services are
too complex and it has many capabilities, each
corresponding to a business level concept. Customer
requires a service that exploits only a fraction of the
service’s capabilities. Each capability uses many different
software functions that cause demands on distributed or
multitier set of resources such as CPUs.

The results of these predictions will help the
schedulers to improve the allocation of resources to the
different tasks. The technique is used to support system
sizing and capacity planning exercises, costing and pricing
exercises, and to predict the impact of changes to a service
upon different service customers. In this paper, we present a
framework which uses semantically enhanced historical data
for predicting the behavior of tasks and resources in the
system, and allocating the resources according to these
predictions.

Keywords — Benchmarking, Linearity,
Multicollinearity, Resource Demand Estimation,
Statistical Regression.

I. INTRODUCTION
When running a small business, it is

important to have an idea of what you should expect
in the way of sales. To estimate how many sales a
company will make, demand estimation is a process
that is commonly used. With demand estimation, a
company can gauge how much to produce and make
other important decisions. Demand estimation is a
process that involves coming up with an estimate of
the amount of demand for a product or service. The
estimate of demand is typically confined to a
particular period of time, such as a month, quarter or
year. While this is definitely not a way to predict the
future for your business, it can be used to come up
with fairly accurate estimates if the assumptions made
are correct.

In the absence of centralized control, such
behaviors’ may be self-reinforcing, leading to a rapid
degradation of system performance. A major
challenge within open markets is the ability to satisfy
service demand with an adequate supply of service

providers, especially when such demand may be
volatile due to changing requirements or fluctuations
in the availability of services. Ideally, this supply and
demand should be balanced; however, when consumer
demand changes over time, and providers
independently choose which services they provide, a
coordination problem known as ‘herding’ can arise
bringing instability to the market. This behavior can
emerge when consumers share similar preferences for
the same providers, and thus compete for the same
resources. Likewise, providers which share estimates
of fluctuating demand may respond in unison,
withdrawing some services to introduce others, and
thus oscillate the available supply around some ideal
equilibrium. One approach to avoid this unstable
behavior is to limit the flow of information between
agents, such that they possess an incomplete and
subjective view of the local service availability. A
model called Demand Estimation with Confidence
(DEC) requires the preparation and execution of a
number of benchmarks under controlled conditions. A
benchmark submits a semantically correct sequence of
requests to a system under study. Resource demands
are measured for each benchmark separately.

DEC enables a measurement-based test that
can be used to validate demand estimates as well as
ascertain whether a given service would achieve its
performance requirements when executed on a target
platform. Together these characteristics of DEC can
help service providers assess the risks of providing
services to new customers based on customer-specific
workloads

II. METHODOLOGY

A. DEC-BASIC Method
This section provides a brief summary of the

method used within DEC-BASIC to compute a linear
combination vector L for a subset of benchmarks. As
stated previously, demand prediction problem a ratio
computation technique that devised previously to
support synthetic workload generation. Although the
modifications required relative to the previous work
were fairly straightforward, the technique described

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –
April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 532

here for the sake of clarity and completeness. Let the
product FX, correspond to a customer’s desired use of
a system’s functions. The problem of computing L is
to determine a linear combination of a subset of the B
benchmarks that results in FX. In other words, let A*
be a M×K matrix containing function execution
counts vectors for K benchmarks, K ≤ B, upon the M
functions. The K rows of L represent benchmark
execution counts for the benchmarks corresponding to
the function counts vectors of A*. If the chosen
benchmarks were run with these benchmark execution
counts, the resulting function counts would be FX.
The problem of computing the linear combination
vector L is to determine an A*and L such that the
following conditions are satisfied:

A*L = FX,

 (1)
L(l) ≥ 0 ∀	l.

Above equation specifies that the function

counts achieved by combining the benchmarks in A*
according to the benchmark counts in L should equal
the desired function counts given by FX. Equation
restricts the computed benchmark counts to be
nonnegative values. To solve the problem, an
algorithm is devised which iteratively determines the
A* matrix and the L vector that satisfy the conditions
given. Fig provides a high-level overview of the
algorithm. The steps of the algorithm are as follows:

1. To begin, an initial A* matrix is

determined by identifying a small subset of the B
benchmarks. This relies on the computation of an
algebraic basis set for the B benchmarks. The
algebraic basis set has the property that a benchmark
not belonging to the set can be synthesized as a linear
combination of benchmarks in the set with respect to
its function execution counts. In effect, the basis set
contains benchmarks that are distinct from one another
in terms of their function execution counts. MATLAB
rref function used to compute the algebraic basis.

2. At each step of the iteration of DEC-
BASIC, linear programming is used to find a value of
L for a given A* such that the difference between the
desired function counts FX and the achieved function
counts A*L is minimized. Equation forms one of the
constraints of the LP problem. The second constraint
is obtained by relaxing the condition specified to that
given by

 A*L ≤ FX. (2)

This change facilitates an iterative solution
by which A* is progressively modified by adding more
benchmarks to the initial basis set until an L that
satisfies the stricter constraint given, i.e.,
corresponding to a better match between FX and A*L
is found. MATLAB linprog function is used for

solving the LP problem. The detailed LP formulation
is presented in the Appendix.

3. The difference between the desired
function counts and the achieved function counts is
calculated as an M1 slack vector E ¼ FX * A*L. The
algorithm terminates if the mismatches in function
execution counts (given by the elements of E) are less
than or equal to user-specified mismatch thresholds
for function execution counts. By default, as shown in
Fig, the mismatch thresholds are zero signifying a
desire to achieve an exact match of FX. However,
thresholds can be specified to indicate that certain
functions, e.g., those that are resource intensive, need
to be matched more closely than others. The algorithm
also terminates if a user-specified maximum number
of iterations is reached or if all available benchmarks
have been used to synthesize FX.

4. If the algorithm does not terminate in step
3, then the benchmark that offsets E the most is
identified from the remaining benchmarks in B that
are not part of A*. The new benchmark to be selected
is determined by computing the Euclidean distances
between E and the function execution counts vectors
of the remaining benchmarks. The function execution
counts vector that yields the minimum distance is
selected and appended to A* as an additional column.
This is followed by another iteration of the algorithm.
The algorithm is guaranteed to terminate when the
goal is to match a workload mix of functions that
results from the B benchmarks. This is because, in the
worst case, all B benchmarks will be included to
achieve the match. When an exact match of mix is not
possible with a given set of benchmarks, DEC can be
instructed to match certain functions, e.g., resource
intensive functions, more closely than other functions.
Specifically, by relaxing the requirements for a certain
set of functions one can obtain more exact matches for
the other functions not in this set. The next section
describes a new method, named DECITERATIVE,
which automates such a process.

DEC-BASIC ALGORITHM

1. Create algebraic basis set of k benchmarks

from B available benchmarks.
2. Form A* matrix in dimension M x K

corresponding to basis set.
3. The difference between the desired function

counts and the achieved function counts is
calculated to solve LP problem to obtain L
that minimizes F X – A*L.

4. Check A*L= = FX or K= = B
5. The algorithm terminates if the mismatches

in function execution counts are less than or
equal to user-specified mismatch thresholds
for function execution counts.

6. If the algorithm does not terminate then
select a benchmark which is not in the basis
set with best offsets F X – A*L.

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –
April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 533

7. Add selected benchmark to basis set and
form A* matrix of the new set.

8. After that reflect the size of new set. Then
increase the value of k by 1

9. Then repeat the process to solve LP problem
by Go to step:5

B. DEC-ITERATIVE Method

The main idea behind DEC-ITERATIVE is

to aggregate functions together when an exact match
of mix is not possible. Several different criteria could
be used to decide which functions need to be
aggregated. Aggregating functions based on their
impact on system performance. Specifically, functions
are ranked based on performance impact. This can, for
example, be achieved by observing the per-function
mean response times for the M functions when the
suite of B benchmarks is executed against the system
under study. Alternatively, functions could be ranked
based on the per-function demands as estimated by
regression. The ranking is based on response times for
the following discussion. Let the function with the
highest mean response time be assigned a rank of 1
while the function with the lowest mean response time
is assigned a rank of M. When an exact match is not
possible, the two least resource intensive, i.e., least
ranked functions are combined together. The
execution count for this combined function is set to be
the sum of the execution counts of its two component
functions.

DECBASIC is then invoked to match for a

mix expressed in terms of the counts for the non-
aggregated functions and the count for the newly
combined function. The process of aggregation is
repeated if an exact match of this mix is not achieved.
With such an approach the dimension of the mix is
iteratively reduced by 1 from its initial value of M till
DEC-BASIC reports exact matches with respect to the
re dimensioned mix or till M - 1 function have been
aggregated. In effect, the aggregation process
iteratively lumps functions with similar demands
together starting from the least resource intensive
functions. Fig. provides a more formal overview of the
process. Assume that G is an M - 1 matrix obtained by
sorting FX according to the performance impact of the
M functions. Specifically, the ith row of G represents
the function execution counts of the ith most resource
intensive function. Let A be an M ×B matrix
containing function execution counts vectors for the B
available benchmarks upon the M functions such that
Aij represents the number of times benchmark i
invokes the jth most resource intensive function. Let p
represent the dimension of the function space
currently under consideration. As shown in step 1 of
Fig. 2, it is initialized to M. In step 2 of Fig, DEC-
BASIC is invoked with A and G to obtain A* and L as
described. As shown in Fig., the algorithm terminates
if A*L = G or if further aggregation of functions is not

possible. Otherwise, the dimension of the function
space is reduced by 1 as shown in steps 3 and 4 of Fig.
In step 3, the pth row of G is added to the (p-1)th row
of G and the pth row is then set to zero. This represents
the aggregation of the two least resource intensive
functions in the current set of functions. Step 4 shows
the same aggregation operation performed on A. Step
5 updates p to reflect the reduction in the dimension of
the function space. This is followed by a re invoking
of DEC-BASIC with the new values of A and G.
DEC-ITERATIVE has a maximum number of M- 1
iterations. The first iteration of the method is
essentially the same as DEC-BASIC, which includes
all the functions offered by the system. At the nth
iteration, the n least resource intensive functions are
aggregated as one function. Note that, as with DEC-
BASIC, DEC-ITERATIVE is not guaranteed to
provide an exact solution. If by the end of the M - 1
iteration, the method was not able to provide a
solution while satisfying the constraints, the L
computed in the last iteration is reported as the final
solution from DECITERATIVE.

DECITERATIVE can improve on the predictive

accuracy of DEC-BASIC for cases where the latter
technique could not achieve an exact match of the
desired workload ix. In particular, aggregating
functions with low resource demands allows the
algorithm to discover solutions where the more
resource intensive functions are matched better
thereby resulting in improved accuracy. It must be
noted that DEC-ITERATIVE differs from other
techniques, which employ function aggregation. In
effect, DEC-ITERATIVE attempts to first find the
best possible match, but incrementally relaxes the
degree of match when an exact match is not possible.
To the best of our knowledge, other techniques do not
support such a systematic and automated technique to
aggregate functions.

DEC-ITERATIVE ALGORITHM

1. Initialize dimension of function space p=M
2. Invoke DEC-BASIC in which [A*, L]=

INVOKE_DEC_BASIC(A,G)
3. Check whether A*L = = G or p=2.
4. If the above condition is satisfied discard the

process.
5. Else aggregate 2 least resource intensive

functions in G by initialising Gp,1 = 0 and Gp-

1,1 = Gp-1,1 + Gp,1
6. Aggregate 2 least resource intensive

functions in A by initialising Ai,p = 0 and Ai,p-

1 = Ai,p-1 + Ai,p
7. After completing the process reduce

dimension of function space with p=p-1
8. Then Goto step:2

III. THE FRAMEWORK

A. Demand Parameters Estimation

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –
April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 534

Asymptotic normal approximations was

developed to the impact of demand parameter
uncertainty on the service level variance, and discuss
the distributional characteristics of the product
demands, the critical fractile, and the length of the
historical demand data for which it is critical to
capture demand parameter uncertainty. This section
describes two variants of the DEC technique. DEC-
BASIC variant that determines a linear combination of
benchmarks to match a desired mix of system
functions. An extension called DEC-ITERATIVE that
handles in an automated manner scenarios where an
exact match of a desired mix is not possible with the
available set of benchmarks. A way of capturing the
demand parameter uncertainty in the inventory
simulation is to use a Bayesian model that samples the
demand parameters from their Bayesian posterior
density functions before each simulation replication.
There exists well-established literature on Bayesian
probability theory for representing the uncertainty
around the parameters of the standard families of
distributions (Gelman et al. 2000). Assuming the
availability of limited historical demand data, this
literature is used to obtain an asymptotic variance
approximation for the demand parameter uncertainty.
For the demand random variable X having the normal
distribution with mean µ and variance σ 2, the
likelihood function of the available historical demand
data xt, t=1, 2, . . . ,n is given by

,ଵݔ)݂ ,ଶݔ … (ଶߪ,|µ	ݔ, = ଵ

(ଶమ)/మ exp ቄ− ଵ
ଶమ

∑ ௧ݔ) − ଶ୬(ߤ	
୲ୀଵ } (3)

Using a normal prior density function with mean µ0

and variance for the mean µ conditional on
the variance σ2, i.e,

µ|	ߪଶ ∝ ଵ

(మ)భ/మ exp ቄ− బ
ଶమ

௧ݔ) − ଶ} (4)(ߤ	

and an inverse gamma prior density

function with shape parameter and scale
parameter for the variance σ2, i.e.,

ଶߪ ∝ ଵ
(మ)(ೡబశమ)/మ exp ൜− Ϛమబ

ଶమ
ൠ (5)

Obtain a joint conjugate prior density
function, п(μ,σ2) for the demand parameters μ and σ2:

(ଶߪ,µ)ߨ ∝ ଵ

(మ)
ೡబశయ
మ

exp ቄ− ଵ
ଶమ

(Ϛ ଶ + ߤ) (6))ଶቅߤ	−

B. The Historical Data Repository (HDR)

The HDR is a flexible, generic component
implemented by SZTAKI to provide facilities for log
data collection and on-demand predictions. The HDR
is implemented in Java and can be embedded into Java
code or can be run as a separate Web Service. In both
cases, other software components can send their log
data to the HDR, either by our customizable client
APIs or via direct calls. Incoming information must be
in the format of RDF [9], based on the core ontologies
available to all components. The conversion to RDF
can be implemented in client APIs if necessary. Thus,
in our scenario, the service collects and stores
information about past events (i.e., job executions and
resource usage), and provides mining and searching
for these mentioned past events. The collected status
information is stored as RDF inside the HDR. The
repository can then be used for extracting statistics-
and knowledge-based information or predictions.

For example, a predictor can build a
classification model on top of the results of a semantic
query. The classifier can then be used to provide
predictions based on the past. In our specific scenario,
the HDR is loaded with the description of the executed
jobs, their resource usage and the resource downtimes.
This data is used to train the classifier in order to
provide estimations on the probabilities of delays in
the schedule and problems with the job completion
and estimations on the reliability of the used resources.
As the statistical model is periodically updated, the
provided values dynamically reflect the experiences of
the recently finished executions.

Benchmarking is the process of
comparing one's demand estimation processes and
performance metrics to industry bests or best practices
from other industries. Dimensions typically measured
are quality, time and cost. In the process of
benchmarking, management identifies the best firms
in their estimated demand, or in another estimation
where similar processes exist, and compare the results
and processes of those studied (the "targets") to one's
own results and processes. In this way, here learn how
well the targets perform and, more importantly, the
business processes that explain why these firms are
successful.

C. Semantic Resource Allocation Process

In this case, we require ontology for

modeling the system entities such as customers,
service providers, jobs and resources and other
important data such as resource allocation data for job
scheduling and historical data for making predictions.
SVM analyze data in ontology and used for
classification. i.e. the SVM makes the possible classes
from the requirement. From the possible classes, the
resources were allocated to the application.

IV. PERFORMANCE EVALUATION

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –
April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 535

 To evaluate the efficiency, we measure the
CPU time of the process.

A. PERFORMANCE COMPARISION

Figure 1: Performance Comparison

B. DEMAND VALUES

Demand Values shown below are estimated
and expected demand value’s based on the CPU time.

TABLE 1

DEMAND VALUES

V. CONCLUSIONS

Demand Estimation with Confidence (DEC)
is a technique for estimating the resource demands of
services that are implemented by multitier systems. A
customer workload mix was expressed as a linear
combination of a subset of existing benchmarks. This
technique predicted the aggregate resource demands
of new workload mixes directly. Linear combination
weights for the benchmarks were used along with the
measured demands of those benchmarks for offering a
demand estimate for the specified mix.

We present a generic approach and a re-usable
solution for the collection and exploitation of
historical log data produced by services. The
heterogeneity of log data arriving from various

resources calls for a semantic data representation,
which can facilitate the unification of these data and a
query mechanism supported by inference. Our
approach demonstrates the coupling of semantic data
processing with data mining as a promising novel
combination.

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2/, 2011.
[2] C. Amza, A. Chanda, A.L. Cox, S. Elnikety, R. Gil, K. Rajamani,
W.Zwaenepoel, E. Cecchet, and J. Marguerite, “Specification and
Implementation of Dynamic Web Site Benchmarks,” Proc. Fifth
IEEE Workshop Workload Characterization, pp. 3-13, Nov. 2002.
[3] Y. Bard and M. Shatzoff, “Statistical Methods in Computer
Performance Analysis,” Current Trends in Programming
Methodology, vol. 3, pp. 1-51, Prentice-Hall, 1978.
[4] G. Casale, E.Z. Zhang, and E. Smirni, “Kpc-Toolbox: Simple
Yet Effective Trace Fitting Using Markovian Arrival Processes,”
Proc. Fifth Conf. Quantitative Evaluation of Systems, pp. 183-187,
Sept. 2008.
[5] Y. Dodge and J. Jureckova, Adaptive Regression. Springer2000.
[6] N.R. Draper and H. Smith, Applied Regression Analysis. John
Wiley & Sons, 1998.
[7] J.J. Dujmovic, “Universal Benchmark Suites,” Proc. Seventh
Int’l Symp. Modeling, Analysis and Simulation of Computer and
Telecomm. Systems, pp. 197-205, 1999.
[8] Eng. Statistics Handbook, http://www.itl.nist.gov/div898/
handbook/, 2011.
[9] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. John Wiley & Sons, 1991.
[10] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson,
“Estimating Service Resource Consumption from Response Time
Measurements,” Proc. Fourth Int’l Conf. Performance Evaluation
Methodologies and Tools, Oct. 2009.
[11] D. Krishnamurthy, “Synthetic Workload Generation for Stress
Testing Session-Based Systems,” PhD thesis, Dept. of Systems and
Computer Eng., Carleton Univ., 2004.
[12] D. Krishnamurthy, J.A. Rolia, and S. Majumdar, “A Synthetic
Workload Generation Technique for Stress Testing Session-Based
Systems,” IEEE Trans. Software Eng., vol. 32, no. 11, pp. 868-882,
Nov. 2006.
[13] U. Krishnaswamy and D. Scherson, “A Framework for
Computer Performance Evaluation Using Benchmark Sets,” IEEE
Trans. Computers, vol. 49, no. 12, pp. 1325-1338, Dec. 2000.
[14] T. Kubokawa and M. Srivastava, “Improved Empirical Bayes
Ridge Regression Estimators under Multicollinearity,” Comm. In
Statistics—Theory and Methods, vol. 33, no. 8, pp. 1943-1973, Dec.
2004.
[15] Y. Lu, T. Abdelzaher, C. Lu, L. Sha, and X. Liu, “Feedback
Control with Queuing-Theoretic Prediction for Relative Delay
Guarantees in Web Servers,” Proc. IEEE Real-Time and Embedded
Technology and Applications Symp., pp. 208-217, 2003.
[16] D. Menasce, “Computing Missing Service Demand Parameters
for Performance Models,” Proc. Int’l Computer Measurement
Group Conf., pp. 241-248, 2008.
[17] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel,
“Performance Impacts of Autocorrelated Flows in Multi-Tiered
Systems,” Performance Evaluation, vol. 64, nos. 9-12, pp. 1082-
1101, 2007.
[18] D. Mosberger and T. Jin, “httperf—A Tool for Measuring Web
Server Performance,” ACM SIGMETRICS Performance Evaluation
Rev., vol. 26, no. 3, pp. 31-37, 1998.

Functions Estimated Value Expected Value
20 3 8
40 6 8.3333
60 9 8
35 5 7.33333
30 4 6
46 6 4.33333
70 10 5.33333
78 11 9.333333

