
International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 751

Spartan 3E Synthesizable FPGA Based Floating-Point
Arithmetic Unit

Yedukondala Rao Veeranki#1, R. Nakkeeran*2

#Department of Electronics Engineering, Pondicherry University
Puducherry, India.

*Department of Electronics Engineering, Pondicherry University
 Puducherry, India

Abstract— Floating point operations are hard to implement on
Field Programmable Gate Arrays (FPGA) because of the
complexity of algorithms is more. Then again, many scientific
applications require floating point arithmetic because of high
accuracy in their calculations. Therefore, an attempt is made to
explore FPGA implementations in Institute of Electrical and
Electronics Engineers (IEEE) -754 standard floating-point
numbers. Many algorithms depend on floating point arithmetic
because floating point representation supports huge range. In
this paper an efficient implementation of an IEEE 754 single
precision floating point arithmetic unit is designed in Xilinx
SPARTAN 3E FPGA. VHDL environment is performed for
floating point arithmetic unit design using pipelining, which
provides high performance. Pipelining is used to execute
multiple instructions simultaneously. In top-down design
approach, four arithmetic modules, addition/ subtraction,
multiplication and division are combined to form a floating
point arithmetic unit. Synthesis and simulation results are
obtained by using Xilinx13.1i platform.

Keywords— ALU - Arithmetic Logic Unit; Top-Down design;
floating point; FPGA; Pipelined Architecture.

I. INTRODUCTION

By using Field Programmable Gate Arrays (FPGAs) the
designers can build any logic device in hardware quickly
and easily. The programmability and flexibility of FPGAs
make them ideal for prototyping, quick time-to-market
applications, one-off implementations, and customized
hardware. They are especially valuable in applications when
a custom circuit is required, but the production volume does
not justify the costs and time of fabricating them on
application-specific integrated circuits (ASICs). Advances
in process technology have led to dramatic increase in
FPGAs densities and speeds. FPGAs are now becoming
more suitable for supporting designs with dense
computations and high operating frequencies. Consequently,
FPGAs are becoming more suitable for supporting high
speed floating point arithmetic units. Floating point units are
widely used in digital applications such as digital signal
processing, digital image processing and multimedia. In
conventional floating point units, the most frequently used
floating point operations are multiplication and
addition/subtraction counting for more than 94% of all
floating point instructions. Hence the employment of highly

performing divider, multiplier and adder/subtractor modules
is of high importance.

Floating-point addition is the most complex operation in
a floating-point arithmetic and consists of many variable
latency- and area dependent sub-operations. In floating-
point addition implementations, latency is the primary
performance bottleneck. Much work has been done to
improve the overall latency of floating-point adders. Various
algorithms and design approaches have been developed by
the VLSI community in the last two decades. For the most
part, digital design companies around the globe have
focused on FPGA design instead of ASICs because of their
effective time to market, adaptability, and, most
importantly, low cost. The floating-point unit is one of the
most important custom applications needed in most
hardware designs, as it adds accuracy, robustness to
quantization errors, and ease of use. There are many
commercial products for floating-point addition that can be
used in custom designs in FPGAs but cannot be modified
for specific design qualities like throughput, latency, and
area. Much work has also been done to design custom
floating-point adders in FPGAs. Most of this work aims to
increase the throughput by means of deep pipelining.

II. DESIGN OF FLOATING POINT ADDER/SUBTRACTOR

The algorithms for addition/subtraction require more
complex operations due to the need for operator alignment.
Three floating point add/subtract algorithms are briefly
introduced in this section: standard, leading-one predictor
(LOP), and 2-path. The implementation of these steps
defines floating point arithmetic unit latency and area. To
illustrate comparisons, we consider the block diagrams of
the floating point adder/subtractor shown in Figures 1, 2, 3.
Standard floating point addition requires five steps:

1. Exponent difference
2. Pre-shift for mantissa alignment
3. Mantissa addition/subtraction
4. Post-shift for result normalization
5. Rounding

The area-efficient standard floating point adder is

shown in Figure 1. The exponents of the two input operands,

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 752

ExponentA and ExponentB are fed to the exponent
comparator. In the pre-shifter, a new mantissa is created by
right shifting the mantissa corresponding to the smaller
exponent by the difference of the exponents so that the
resulting two mantissas are aligned and can be added. Right
shifting is nothing but dividing by power of 2. If the
mantissa adder generates a carry output the resulting
mantissa is shifted one bit to the right and the exponent is
increased by one. The normalizer transforms the mantissa
and exponent into normalized format. Result of subtraction
may require a massive left shift during normalization. It first
uses a Leading-One-Detector (LOD) circuit to locate the
position of the most significant one in the mantissa.

Based on the position of the leading one, the resulting
mantissa is left-shifted by an amount subsequently deducted
from the exponent. In the normalization process if the adder
result is too large then it shifts to right (divide by2) and if
the adder result is too small then it shifts to right (multiply
by 2).Precission is lost when some bits are shifted to right of
the right most bit or are thrown. To obtain the accuracy the
shifted out bits are also used as G(I), R(round),S(sticky).If
G=R=1 then add 1 to the LSB of result. If G=R=0 then no
change in result. If G=1 & R=0 then look at S. If S=1 add 1
to LSB and if S=0 round the nearest even i.e. add 1 to LSB
if LSB=1.

A. Standard Floating Point Add/Subtract Algorithm

For the standard algorithm, the exponent comparator is

implemented with a subtractor and a multiplexer. The
comparator requires about 2×n LUTs, where n is the
exponent bit-width. The size of the pre-shifter is about m ×
log(m) LUTs, where m is the bit-width of the mantissa. The
size of the mantissa adder depends on the adder architecture
and sign mode. If a ripple-carry adder is used for an
unsigned mantissa, about m LUTs are required. The
752normalizer LOD is nearly the same size as the mantissa
adder. The shifter is equal in size to the pre-shifter and the
subtractor (SUB) is about the same size as the exponent
comparator. Overall, the size of the 752normalizer is about
the sum of the sizes of the other three components.

Fig. 1 LOD Algorithm

B. LOP Algorithm

Figure 2 shows a block diagram of a Leading-One-
Predictor (LOP) floating point adder. LOP is a technique in
which no. of preceding 1’s or 0’s in the result can be
predicted directly from the input operands to within an error
of 1-bit, in parallel with addition/subtraction step. The error
comes from possible carry-in. It has mainly two purposes
first, it detects the bit pattern and second it is used for sticky
bit computation. This adder implementation requires more
area than a standard adder, but exhibits reduced latency. The
primary difference between the adders is the replacement of
the leading-one detector (LOD) circuit with a leading-one
predictor (LOP) circuit. Since the LOP circuit can be
executed in parallel with mantissa addition, overall latency
can be reduced.

Fig.2 LOP Algorithm

C. FAR and CLOSE Path Algorithm

The 2-path adder, shown in Figure 3, has two parallel
data paths. This implementation exhibits the smallest
latency of the three adders, due to the elimination of a
shifter from the critical path, at the cost of additional
mapping area. When the exponents of the two values are

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 753

Fig. 3 Two-path Algorithm

larger than 1, the far path, on the right in Figure 3, is taken.
Otherwise, the close path on the left is taken. After
alignment, one of the mantissas is reduced and shifted by at
most one bit. This close path implementation eliminates the
preshifter.

III. FLOATING POINT MULTIPLICATION
ALGORITHM

Normalized floating point numbers have the form of

Z= (-1S) * 2 (E - Bias) * (1.M).
To multiply two floating point numbers the following is
done:

1. Multiplying the significand; i.e. (1.M1*1.M2)
2. Placing the decimal point in the result
3. Adding the exponents; i.e. (E1 + E2 – Bias)
4. Obtaining the sign; i.e. s1 xor s2
5. Normalizing the result; i.e. obtaining 1 at the

MSB of the results’ significand
6. Rounding the result to fit in the available bits
7. Checking for underflow/overflow occurrence

Fig.4 shows the data path for a floating-point Multiplication.
Only the main parts of the data path are shown for clarity.
The prealignment and normalization stages require large
shifters. The prealignment stage requires a right shifter that
is twice the number of mantissa bits (i.e., 48 bits for single-
precision, 106 bits for double-precision) because the bits
shifted out have to be maintained to generate the guard,
round and sticky bits needed for rounding. The shifter only
needs to shift right by up to 24 places for single-precision or
53 places for double-precision.

Fig.4 Floating Point Multiplication Algorithm

Fig.5 Booth Wallace Multiplier

The normalization stage requires a left shifter equal to
the number of mantissa bits plus 1 (to shift in the guard bit),
i.e., 25-bits for single-precision and 54-bits for double-
precision. If the rounding of the mantissa results in an
overflow, the mantissa is shifted right by one and the
exponent is incremented. a very wide multiplier—53 53-bit
unsigned multiplier for double-precision and 24 24-bit for
single-precision. Therefore, an efficient multiplier must be
employed.

In this work, we use a Radix-4 modified booth encoded
(MBE) Wallace multiplier as shown in Fig. 5, which was
based on the designs in. Radix-4 recoding halves the number
of partial products, thus reducing the number of levels
required in the Wallace tree, which improves performance
and reduces area.

IV. FLOATING POINT DIVIDER ALGORITHM

To divide two floating point numbers the following is

done:
1. Divide the significands; i.e. (1.M1÷1.M2)
2. Placing the decimal point in the result
3. Subtracting the exponents; i.e. (E1 + E2 – Bias)

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 754

4. Obtaining the sign; i.e. s1 xor s2

Fig. 6 Floating Point Arithmetic Unit Design

5. Normalizing the result; i.e. obtaining 1 at the MSB of
the results’ significand

6. Rounding the result to fit in the available bits
7. Checking for underflow/overflow occurrence.

V. ALU DESIGN

The ALU design using VHDL the Specifications
for a 16-bit floating-point ALU design are:

i. Input A and B and output result are 32-bit

binary floating point.
ii. Operands A and B operate as follows

A (operation) B=results
Operation can be addition (+), subtraction (-),
Multiplication (*), division (/)

iii. ‘Selection’ a 2-bit input signal that selects ALU
operation and operate as shown in table1.

iv. Status- a 4-bit output signal work as flag a
microprocessor.

v. Clock pulse is only provided to the module
which is selected using demux.

vi. Concurrent processes are used to allow
processes to run in parallel hence pipelining is
achieved by this execution.

Table I. Status Signals

S1 and So operation

00 add

01 sub

10 Multiply

11 divide

Fig. 7 Pipelining

VI. SIMULATION RESULTS

A. Adder/subtractor

The opa and opb are the two inputs (32-bits) of
floating point adder and add (32- bits) is the output of
floating point adder. The overflow bit will be high if
range exceeds the maximum value and underflow bit
will be high if range is smaller than minimum value

Fig. 8 Behavioral Simulation of Floating Point Adder/Subtractor.

B. Multiplier

The fp_a and fp_b are the two inputs (32-bits) of

floating point multiplier and fp_z (32-bits) is the output
of floating point multiplier.

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 755

Fig.9 Behavioral simulation of floating-point multiplier.

C. Divider

The ‘a’ and ‘b’ are the two inputs (32-bits) of

floating point divider and result (32-bits) is the output of
floating point divider. The ‘go’ signal should be high and
reset signal should be ‘0’.The output bit overflow will be
high if range of the number is exceeds the maximum
value.

Fig.10 Behavioral Simulation of Floating Point Divider.

Table II. Floating point adder Analysis

module Clock
period(ns) Area(slices) Logic

levels

FP
ADDE

R

LOD 33.159 694 44

LOP 28.358 731 31
Two-
path 22.313 1020 29

FP multiplier
 10.402 272 34

FP divider
 7.058 185 27

VII. CONCLUSION

This paper presents single precession floating point

arithmetic unit. Four operations are implemented and

simulated: addition, subtraction, multiplication and division.
FP addition is implemented using LOD, LOP and two-path
algorithms. The tradeoff between area and delay is observed
in the floating point arithmetic unit by replacing different
types of floating point adder algorithms in place of addition.

VIII. FUTURE SCOPE

The future scopes of this project are to implement the
proposed floating point arithmetic unit using Field-
Programmable Gate Arrays (FPGAs).

REFERENCES

[1] Yee Jern Chong and sri Parameswaram, “Configurable Multimode
Embedded units floating-point for FPGAs”, IEEE Transactions on
VLSI systems, pp. 2033-2044, Vol.19, No.11, November 2011.

[2] IEEE Standard Board and ANSI, “IEEE Standard for Binary Floating-

Point Arithmetic”, IEEE Std 754.

[3] J. D. Bruguera and T. Lang, “Leading-One Prediction with

Concurrent Position Correction”, IEEE Transactions on Computers,
pp. 1083–1097, Vol. 48, No.10.

[4] Xilinx, http://www.xlinix/com.

[5] Taek-Jun Kwon, Jeff Sondeen, Jeff Draper, “Design Trade-Offs in

Floating-Point Unit, Implementation for Embedded and Processing-
In-Memory Systems”, USC Information Sciences Institute, 4676
Admiralty Way Marina del Rey, CA 90292 U.S.A.

[6] Jinwoo Suh, Dong-In Kang, and Stephen P. Crago, “Efficient

Algorithms for Fixed-Point Arithmetic Operations in an Embedded
PIM”, University of Southern California/Information Sciences
Institute, 2005.

[7] Yu-Ting Pai and Yu-Kumg Chen, “The Fastest Carry Lookahead

Adder”, Tutorial Report, Department of Electronic Engineering,
Huafan University.

[8] David Narh Amanor, “Efficient Hardware Architectures for Modular

Multiplication”, Communication and Media Engineering, University
of Applied Sciences Offenburg, Germany, 2005.

[9] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna, “Analysis of High-

Performance Floating-Point Arithmetic on FPGAs,” International
Parallel and Distributed.Processing Symp., pp. 149b, April 2004.

[10] Nabeel Shirazi,Al walters,and peter Athanas, “Quantitative Analysis

of Floating Point Arithmetic on FPGA Based Custom Computing
Machines”, IEEE Symposisum on FPGAs for Custom Computing
Machines.

[11] V. G. Oklobdzija, “An Algorithmic and Novel Design of a Leading

Zero Detector Circuit: Comparison with Logic Synthesis”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, pp.
124-128, Vol. 2, No. 1.

