
International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 760

Mining Frequent Itemsets Using Apriori

Algorithm

 Jogi.Suresh1, T.Ramanjaneyulu 2

 1 Dept. of CSE, KL UNIVERSITY, Vijayawada, A.P., 535003, India
 2 Dept. of IT, JNTUK UCEV, Vizianagaram, A.P., 535003, India

Abstract-Mining required data from voluminous Data
has been recognized as one of the most challenging
problems in data mining approach. In many real world
scenarios, the data is not extracted from single data
source but from distributed and heterogeneous data
sources. The discovered knowledge is expected
comprehensive so that it can better fit in business
environment Enterprise data mining applications
involve dealing with complex data such as data from
multiple heterogeneous data sources, extracting data in
single step from such data sources such data sources is
time and space consuming. So effective approaches are
needed to decrease the time as well as space. Here we
use Apriori Algorithm for discovering informative
patterns in complex data sets.

Keywords-heterogeneous data, complex data, frequent
patterns, informative patterns.

 I. Introduction

 In data mining, association rule learning is a
popular and well researched method for discovering
interesting relations between variables in large
datasets. Piatetsky-Shapiro describes analyzing and
presenting strong rules discovered in databases using
different measures of interestingness patterns. Based
on the concept of the strong rules, Agrawal
introduced an association rules for discovering
regularities between products in large scale
transaction data recorded by point-of-sale (POS)
systems in all supermarkets. For example the rule
{onion, potatoes}=>{burger} found in the sales data
of a supermarket would indicate that if a customer
buys onions and potatoes together, he or she is likely
to buy burger. Such information can be used as the
basis for decisions about marketing database
activities such as promotional pricing or product
placements.

 In addition to the above example from the
market basket analysis association rules are

Employed today in many application areas including
Web usage mining, intrusion detection and
bioinformatics etc... In computer science and data
mining approach, Apriori is a classic algorithm for
learning association rules. Apriori is designed to
operates on different databases, it contains different
transactions. For example, collections of items
bought by different customers, or details of a website
frequentation. And other algorithms are designed for
finding an association rules in data having no
transactions or having no timestamps.

This paper is organized in the fallowing
way: In section 2 we present Apriori algorithm, In
section 3 we present the General Process of Apriori
Algorithm, In sections 4 we present Sample usage of
Apriori algorithm, In section 5 we present
conclusions of the research.

 II. Apriori algorithm

 The Apriori is the best-known algorithm to mine
association rules. It uses a breadth-first search
technique to counting the support of itemsets and
uses a candidate generation function which exploits
the downward closure property of support. An apriori
uses a bottom up strategy, where frequent subsets are
extended one item at a time it is known as candidate
key generation, and groups of candidates are tested
against the data.

 Apriori algorithm uses breadth-first search and a
tree structure to count candidate item sets an
efficiently. It generates the candidate item sets of
length k from item sets of length k − 1. Then it prunes
the candidates which have an infrequent sub pattern.
According to the downward closure property, the
candidate set contains all frequent k-length item sets.
After that, it scans again the transaction database to
determine frequent item sets among the candidates.

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 761

 Apriori, while historically significant and it
suffers from a number of inefficiencies or trade-offs,
compare with other algorithms. Candidate key
generation generates large numbers of subsets. The
algorithm is attempts to load up the candidate set
with as many as possible before each scan. Bottom-
up subset exploration (essentially a breadth-first
traversal of the subset lattice) finds any maximal
subset S only after all 2^lsl− 1 of its proper subsets.

Useful Concept

 To illustrate the concepts, we use a small
example from the supermarket domain. The set of
items is I = {milk, bread, butter, beer} and a small
database containing the items (1 codes presence and
0 absence of an item in a transaction) is shown in the
below table. An example rule for the supermarket
could be {milk, bread} => {butter} meaning that if
milk and bread is bought, customers also buy butter.
This example is small. In practical applications a rule
needs a support of several hundred transactions
before it can be considered statistically significant
and datasets often contain thousands or millions of
transactions.

 For select interesting rules from the set of all
possible rules, we constraints on various measures of
significance and interests. The best-known
constraints are minimum thresholds on support and
confidence.

Support

The support supp(X) is an itemset X is defined as the
proportion of transactions in the data set which
contain the itemset.

supp(X)=

In the example database, the itemset {milk, bread,
butter} has a support of 4 /15 = 0.26 since it occurs in
26% of all transactions. To be even more explicit we
can point out that 4 is the number of transactions
from the database which contain the itemset {milk,
bread, butter} while 15 represents the total number of
transactions.

Confidence

The confidence of a rule is defined as:

Conf(X Y) =

For the rule {milk, bread} => {butter} we have the
following confidence:

Supp ({milk, bread, butter}) / supp ({milk, bread}) =
0.26 / 0.4 = 0.65

This means that for 65% of the transactions
containing milk and bread the rule is correct.

Confidence can be used for an estimate of the
probability P(Y | X), the probability of finding the
RHS of the rule in transactions under the condition
that these transactions also contain the LHS.

Lift

The lift of a rule is defined as:

Lift(X Y) =

The rule {milk, bread}=>{butter} has the following
lift: supp({milk,bread,butter}) / supp({butter}) x
supp({milk, bread})= 0.26/0.46 x 0.4= 1.4.

III. The General Process of Apriori Algorithm

Association rule generation is usually divided into
two separate steps:

1. First, minimum support is applied to find all
frequent itemsets in a database.

2. Second, these frequent itemsets and the minimum
confidence constraint are used to form rules.

 While the second step is straight forward, finding
all frequent itemsets in a database is difficult since it
involves searching all possible itemsets. The set of
possible itemsets is the power set over I and has size
2n – 1, excluding the empty set which is not a valid
item sets. Although the size of the powerset grows
exponentially in the number of items n in I, efficient
search is possible by using the downward-closure
property of support (also called anti-monotonicity)
which guarantees that for a frequent itemset, all its
subsets are also a frequent and thus for an infrequent
itemsets, all its supersets also must be infrequent.

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 762

Working of apriori algorithm

1) Find all frequent itemsets:
o Get frequent items:
 Items whose occurrence in database is

greater than or equal to the min_support
threshold.

o Get frequent itemsets:
 Generate candidates from frequent items.
 Prune the results to find the frequent

itemsets.
2) Generate strong association rules from

frequent itemsets
o Rules which satisfy the min_support and

min_confidence threshold.

Apriori Algorithm Pseudo code

The following is process of finding associations using
apriori algorithm.

A. Let’s define:

 Ck as a candidate itemset of size k.

 Lk as a frequent itemset of size k.

B. Main steps of iteration are:

 a. Find frequent set Lk-1.

 b. Join step: Ck is generated by joining Lk-1
with itself (Cartesian product Lk-1 x Lk-1).

 c. Prune step (apriori property): Any (k − 1) size
itemset that is not frequent cannot be a subset of a
frequent k size itemset, it should be removed.

 d. Frequent set Lk has been achieved.

The Apriori algorithm is:

L1= {frequent items};

For (k= 2; Lk-1! = ; k++) do begin

Ck= candidates generated from Lk-1 (that is
Cartesian product Lk-1 x Lk-1 and eliminating any
k-1 size itemset that is not frequent);

For each transaction t in database do

Incrementing the count of all candidates in Ck that
are contained in t

Lk = candidates in Ck with min_sup

end

return Èk Lk;

 As is common in association rule mining, given
a set of itemsets (for instance, sets of retail
transactions, each listing individual items is
purchased), the algorithm attempts to finding subsets
which are common to at least a minimum number C
of the itemsets. Apriori uses a bottom up strategy,
where frequent subsets are extended one item at a
time it is known as candidate key generation, and
groups of candidate keys are tested against the data.
The algorithm terminate when no further successful
extensions are found.

Methods to Improve Apriori’s Efficiency

1. Hash-based itemset counting: A k-itemset
whose corresponding hashing bucket count
is below the threshold cannot be frequent.

2. Transaction reduction: A transaction that
does not contain any frequent k-itemsetis
useless in subsequent scans.

3. Partitioning: Any itemset that is potentially
frequent in DB must be frequent in at least
one of the partitions of DB.

4. Sampling: mining on a subset of given data,
lower support threshold + a method to
determine the completeness.

5. Dynamic itemset counting: add new
candidate itemsets only when all of their
subsets are estimated to be frequent.

IV. Sample usage of Apriori algorithm

 A large supermarket tracks sales data by Stock-
keeping unit (SKU) for each item, and thus it is able
to know what items are typically purchased together.
An apriori is a moderately efficient way to build a list
of frequent purchased item pairs from this data. Let
the database of all transactions consist of the sets
{1,2,3,4},{1,2,3,4,5}, {2,3,4}, {2,3,5}, {1,2,4},
{1,3,4}, {2,3,4,5}, {1,3,4,5}, {3,4,5}, {1,2,3,5}.Each
number corresponds to a product such as "butter" or
"water". The first step of Apriori is to count up the
frequencies in data set, called the supports, of each
member item separately.

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 763

We can define a minimum support level to qualify as
"frequent," which depends on the context. For this
case, let min support = 4. Therefore, all are frequent.
The next step is to generate a list of all 2-pairs of the
frequent items. Had any of the above items not been
frequent, they would not have been included as a
possible member of possible 2-item pairs. In this
way, Apriori prunes the tree of all possible data sets.
In next step we again select only these items (now 2-
pairs are items) which are frequent (the pairs written
in bold text).

Here we generate list of all 3-triples of the frequent
items from the dataset (by connecting frequent pair
with frequent single item).

The algorithm will end here because the pair {2, 3, 4,
5} generated at the next step does not have the
desired support.

 We will now apply the same algorithm on the
same set of data considering that the min support is 5.
We get the following results is:

Step 1:

Step 2:

The algorithm ends here because here we don’t have
the 3-triples generated at Step 3 have de desired
support.

 V. CONCLUSION

 Apriori is One of the most popular data mining
approaches is to find frequent itemsets from a
transaction dataset and derive association rules.
Finding frequent itemsets is not trivial because of its
combinatorial explosion. Once frequent itemsets are
obtained, it is straightforward to generate association
rules with confidence larger than or equal to a user
specified minimum confidence. Further we use many
algorithms for finding informative patterns from the
complex data sources.

 REFERENCES

[1] M., Suraj Kumar Sudhanshu, Ayush Kumar and Ghose M.K.,
“Optimized association rule mining using genetic algorithm
Anandhavalli Advances in Information Mining” , ISSN: 0975–
3265, Volume 1, Issue 2, 2009, pp-01-04.

[2] Daniel Hunyadi, “Performance comparison of Apriori and FP-
Growth algorithms in generating association rules”, Proceedings of
the European Computing Conference.

International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 764

[3] Jiawei Han, Jian Pei, and Yiwen Yin, “Mining Frequent
Patterns without Candidate Generation” SIGMOD'2000 Paper ID:
196.

[4] Agrawal R, Srikant R (1994) Fast algorithms for mining
association rules. In: Proceedings of the 20th VLDB conference, pp
487–499.

[5] J. Han, M. Kamber (2001), Data Mining, Morgan Kaufmann
Publishers, San Francisco, CA.

[6] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In J. Bocca, M. Jarke, and C.
Zaniolo, editors, Proc. Int. Conf. on Very Large Data Bases, pages
478–499, Santiago, Chile, 1994.

[7] Craus M., Archip A., A Generalized Parallel Algorithm for
Frequent Itemset Mining, Proceedings of the 12th WSEAS
International Conference on Computers, Heraklion, Greece, 2008,
pg. 520-523.

 BIOGRAPHY

 Jogi.suresh received the B.Tech

degree in Information

Technology from JNTU affiliated

College. He is currently pursuing

M.Tech. In Computer Science

and Engineering from

K.L.University, Vijayawada.

 T.Ramanjaneyulu received the

B.Tech degree in Information

Technology from JNTU affiliated

College and also received the

M.Tech degree in Computer Science

and Engineering from JNTU

vizianagaram.

