
International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 2 July 2017 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 130 

Survey on 2-connectivity in Directed Graphs 

T.Manohar Reddy*1, Dr.P.Chandra Sekhar 

PG Student, Department of CSE, JNT University, Ananthapur, AP 

Department of CSE, SK University, Ananthapur, AP 

ABSTRACT 

In this paper, the Survey of some recent 

results on graph connectivity problems like 2-vertex 

connectivity and 2-edge connectivity problems in 

directed graphs have been discussed. 2-vertex and 2-

edge connectivity problems in directed graphs are 

more difficult than on undirected graphs. By using 

depth first search 2-edge and 2-vertex connectivity, 

bridges, articulation points can be computed in linear 

time for undirected graphs. In the case of a directed 

graph, the same problems have been much more 

challenging and required the development of new 

ideas and techniques. 

I.INTRODUCTION 

Connectivity is a fundamental concept in graph 

theory. A lot of work done in the case of a undirected 

graph, but not much has been studied for directed 

graphs. In this survey, we are summarizing the 2-

vertex and 2-edge connectivity for directed graphs, 

the concepts of graph theory. The definition of 

connectivity given by Douglas West [1] as a 

separating set or vertex cut of a graph is a set S is a 

subset of V(G)such that G – S has more than one 

component. The Connectivity of G, written k(G), is 

minimum size set S such that G – S is disconnected 

or has only one vertex. A graph is k-connected if it 

has connectivity is at least k. A graph with more than 

two vertices has connectivity 1 if and only if it is 

connected and has a cutvertex. A graph with more 

than one vertex has connectivity 0 if and only if it is 

disconnected.  

     Douglas West [1,4.1.7] defined, A disconnecting 

setof edges is a set F ⊆ E(G) such that G – F has 

more than one component. A graph is k-edge 

connected if every disconnecting set has at least k 

edges, The edge-connectivity of G is a minimum 

size of a disconnecting set. A maximal connected 

subgraph that has no cut-vertex is a block. 

II.FUNDAMENTAL CONCEPTS 

2.1 Connectivity in Undirected Graphs 

In an undirected graph G, if we remove any edge, 

then the number of connected components will 

increase, such that the removal edge known as a 

bridge.In a graph, if no bridges exist then the graph is 

2-edge connected. 

 

Figure 1  undirected graph 

 

 

Figure 2 2-edge connected components 

In figure1and Figure 2, we have shown bridges and 

2-edge connected components for an undirected 

graph. By Menger’s Theorem[ 2], any two vertices 

are 2-edge connected if and only if a number of 

connected components will not increase if we remove 

an edge from the graph G. 

In an undirected graph G, if we remove any vertex, 

then the number of connected components will 

increase, then removal vertex is known as 
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anarticulation point.In a graph no articulation point 

present then the graph is 2-vertex connected. 

 

Figure 3 The articulation points of Graph 

 

Figure 4 2-vertex connected components 

By using depth-first search [4] we can compute 

bridges, articulation points, 2-edge connected 

components and 2-vertex connected components in 

linear time. 

2.2 Connectivity in Directed Graphs 

In a directed graph G, if we remove an edge(resp.. a 

vertex), thena number of strongly connected 

components, the removal edge known as astrong 

bridge( a strong articulation point)[10].In a directed 

graph if no strong bridge( strong articulation point) 

exists, then graph the graph is 2-edgeconnected(2-

vertex connected). Two vertices, let us say v and u, 

are 2-edge connected(resp..2-vertex connected) if it 

has two edge-disjoint (two vertex-disjoint) paths 

from v to u as well as u to v should be present. 

 

 

Figure 5 (a) strongly connected directed graph.(b) 2-

vertex connected components. (c) 2-vertex connected 

blocks. (d) 2-edge connected components. (e) 2-edge 

connected blocks. 

III.LITERTURE SURVEY 

ALGORITHMS FOR CONNECTIVITY IN 

DIRECTED GRAPHS 

3.1 Authors: Erusalimskii, Svetlov [6] 

In this algorithm, authors proposed that it reduces 2-

vertex connected components problem of thedirected 

graph to the 2-vertex connected components of the 

undirected graph. But they did not analyze the time 

complexity of theproblem. 

METHOD: 

1. Repeat 

2.  Compute the connected components 

3.  Remove the strong bridges 

4.  For every vertex do 

5.     Compute the connected components 

6.     Remove the strong bridges 

7. Until no edge to remove on step 6 

8. Compute 2-connected components 

The authors did not analyze the time complexity of 

above algorithm, but Jaberi[5]showed that the 

algorithm will take O(nm2) time which has a huge 

gap between directed and undirected graph.the 

authors provided an algorithm for computing all 

biblocks of a directed graph, where the biblocks of a 

directed graph are its maximal strongly 

connectedsubgraphs that do not contain any strong 

articulation point. A biblock is either a 2-vcc, a single 

vertex or two vertices which are connected by two 
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antiparallel edges.In this paper, we are only interested 

in computing the 2-vccs of a directed graph. LetG = 

(V,E) be a strongly connected graph, and let v be a 

strong articulation pointin G. Then the vertex v does 

not necessarily occur in two or more 2-vccs of G. 

Theorem:The running time of thealgorithm is 

O(nm2). 

Proof. The number of iterations of the repeat-loop is 

at most m since at least oneedge is removed in each 

iteration. The strongly connected components of a 

directedgraph can be found in linear time using 

Tarjan’s algorithm. In each iteration ofthe repeat-

loop, steps 4–7 require O(n(n + m)) time. The 2-

connected componentsof an undirected graph can be 

computed in linear time using Tarjan’s 

algorithm.Thus, the total running time of Algorithm 

is O(m(n(m + n))) = O(nm2). 

3.2 Nagamochi, Watanabe[9] 

Nagamochi and Watanabe used max-flow algorithm 

to determine the edge weights in the auxiliary graph. 

METHOD: 

In theprocedure, the algorithm picks the random 

vertex from the input graph G, then runs the max-

flow algorithm to find out the max-flow from the 

sourcevertex to randomly picked vertex in the first 

step. Then determine the min-cut from all max-flow, 

which is nothing but minimum max-flow among all 

max-flows. The min –cut edge added to the auxiliary 

graph. This procedure calls recursively.After the 

auxiliary graph constructed k-edge connected 

components can be constructed by removing all 

edges whose max-flow value less than k.The 

algorithm time complexity is O(Fmn), where  F is the 

time taken for computing max-flow and m,n 

arenumber of edges and vertices in the input graph G. 

This algorithm not only for 2-connectivity and also 

computes the k-connected components, where k 

might be any value greater than or equal to one. 

3.3 Authors: Jaberi [6] 

In this method, Author investigates the relationship 

between 2-vertex connected components and 

dominator trees and also proposed an algorithm for 3-

vertex connected components. And it takes O(nm2)in 

theworst case, of graph G which contain m edges and 

n vertices. 

Method: 

1. If G is 2-vertex connected then output v 

2. else 

3. Compute the strong articulation points  

4. Chose a vertex such that is a strong    articulation 

point 

5. Compute dominator trees 

6. Chose a dominator tree of that contains more 

non-trivial dominators 

7. for each vertex V do 

8. if |M(v)| ≥ 2 then 

9. compute the strongly connected components 

10. for each strongly connected component do 

11.  if |C| ≥ 3 then 

12. Recursively compute the 2-vertex connected 

components of G[C]  

13. Else 

14. Recursively compute 2-VCC of G[w]U[w] and 

output them. 

Theorem 3,1.The algorithm runs in O(nm) time. 

Proof. The dominators of a flowgraph can be found 

in linear time [15,14]. The strongarticulation points 

of a directed graph can also be computed in linear 

time using thealgorithm of Italiano et al. [12]. 

Furthermore, the strongly connected components of a 

directed graph can be computed in linear time using 

Tarjan’s algorithm [13]. Ateach level of the 

recursion, atleast one vertex must be removed in lines 

4–5 or the setof vertices must be split in lines 6–10. 

Hence, the recursion depth is at most n. Fixsome 

recursion level. We consider the cost of the calls of 

the procedure exceptingthe recursion. For one call, 

the cost is linear in the size of the current subgraph. 

LetG′[C1 ∪ {v}] = (V1,E1),G′[C2 ∪ {v}] = (V2,E2), 

. . . ,G′[Ct ∪ {v}] = (Vt,Et) be thesubgraphs of the 

directed graph G′ = (V ′,E′) considered on this level 

in all calls.Then P1≤i≤t |Ei| ≤ |E′| since the strongly 

connected components of G′ are disjoint.The total 

cost at each level of the recursion is, therefore, 

O(nm).we have abase condition such that a graph 2-

vertex connected, it should have atleast 3 vertices. 

Finding strong articulation points we use simple 

breadth first search algorithm which takes only 

O(m+n) linear time. To find dominator tree we 
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should find all dominator of the subgraph. Vertex u is 

said to be dominator of vertex v in graph G if every 

path from the source vertex to vertex v in graph G 

contains vertexu. Lengauer and Tarjan [7] presented 

an algorithm for computing dominators inO(mα(m,n)) 

time for graph G which has m edges and n vertices, α 

is an Ackermann’s[8] inverse function. Overall time 

for above method is O(nm) in the worst case. If a 

strong bridge separates pairs of vertices in successive 

recursive calls which cause the worst behavior of this 

method, then it will appear as the strong bridge 

entering the root of a subtree of a dominator tree 

3.4 Authors:M.Henzinger, S.Krinninge,and 

V.Loitzenbauer 

The authors present algorithms that compute the 

2eSCCs and the 2vSCCs of a directed graph in O(n2) 

time. For 2eSCCs we additionally provide an 

algorithm that runs in O(m2/ log n) time, which is 

faster than O(n2) if m = O(n).Thus they significantly 

improve upon the previous O(mn)-time algorithms 

for both 2eSCCs and 2vSCCs. For 2eSCCs the 

previous upper bound stood for 20 years. This 

approach immediately generalizes to computing the 

k-edge strongly connected components (keSCCs) and 

the k-vertex strongly connected components 

(kvSCCs). We give algorithms that, for any integral 

constant k > 2, compute (1) the keSCCs in time 

O(n2log n) improving upon the previous upper bound 

of O(mn)  and (2) the kvSCCs in time O(n3) 

improving upon the previous upper bound of O(mn2). 

1. for i ← 1 to [log γ] − 1 do  

2. 2 (S, Z) ← 2IsolatedSetLevel(G, i) Z contains v 

if G[S] is almost top or bottom SCC w.r.t. v  

3. if S ≠∅ then  

4. return 2vSCC(G[S ∪ Z]) ∪ 2vSCC(G[V \ S]). 

5. (S, Z) ← 2IsolatedSet(G) /* Z contains v if G[S] 

is almost top SCC w.r.t. v */  

6. if S ≠∅ then  

7.  return 2vSCC(G[S ∪ Z]) ∪ 2vSCC(G[V \ S]) 

8. else   

9. return {G} 

Let S be a set of at most 2 i vertices that induces a 

strongly connected subgraph G[S] of G such that 

G[S] is a top SCC or an almost top SCC with respect 

to some vertex v. Since the only edges from vertices 

of V \ S to S are from v, the in-degree of each vertex 

in S can be at most 2i . By applying the results from 

the previous section, we show that we can detect such 

a set S by searching for SCCs and vertex-dominators 

in the graphs FG,i constructed from Gi with the 

artificial root G.  

Lemma 3.4.1. If a set of vertices S with |S| ≤ 2i 

induces a tSCC or an almost tSCC in G with respect 

to some vertex v, then S ⊆ V \ BG,i. 

 To find bSCCs and almost bSCCs we also search for 

top SCCs in Rev(G). The search for both top and 

bottom SCCs ensures that whenever an (almost) 

tSCC and a disjoint (almost) bSCC exist in G, we 

only spend time proportional to the smaller one. This 

search is performed in Procedure 2Isolated Set Level, 

which fulfills the following guarantee.  

Lemma3.4.2. If for some integer 1 ≤ i < log γ and G 

∈ {G, Rev(G)} there exists a set of vertices T ⊆ V \ 

BG,i that induces in G a tSCC or an almost tSCC 

with respect to some vertex v with T ( V \ {v}, then 

2IsolatedSetLevel(G, i) returns a non-empty set S.  

In Procedure 2vSCC we start the search for (almost) 

top SCCs at i = 1. Whenever the search is not 

successful, we increase i by one, until we have Gi = 

G or Rev(G) i = Rev(G). For the search the Procedure 

2IsolatedSetLevel is used as long as 2 i< γ, i.e., both 

BG,iand Brev(G),i are non-empty, and the Procedure 

2IsolatedSetafterwards. Procedure 2IsolatedSet 

identifies an (almost) top SCC in G if one exists by 

using the known procedures for finding SCCs and 

articulation points. In this way, we can show that 

whenever we had to go up to i or had to use 

Procedure 2IsolatedSet to identify an (almost) top or 

bottom SCC in G, the identified subgraph contains 

Ω(2i) vertices, where i = [log γ] for Procedure 

2Isolated Set This will imply that the search in Gi 

and Rev(G) i for i up to i∗ takes time O(n2i∗) which is 

O(n · min{|S|, |V \ S|}). This will allow us to bound 

the total running time by O(n2).Whenever the 

algorithm identifies an (almost) top or bottom SCC 

induced by a set of vertices S, it recursively calls 

itself on G[S ∪ Z] and G[V \ S] for Z = ∅ or Z = {v}, 

respectively. Every 2vSCC of G is completely 

contained in either G[S ∪ Z] or G[V \ S], which will 

imply the correctness of the algorithm. 

Procedure: 
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1. foreach G ∈ {G, Rev(G)} do  

2.  construct Gi = (V, Ei) with Ei = ∪v∈V {first 2 i 

edges in InG(v)}  

3.  BG,i = {v | IndegG (v) > 2 i}  

4.  S ← TopSCCWithout(Gi ,BG,i)  

5.  if S ≠∅ then 

6.  return (S, ∅) 

7. construct flow graph FG, i(rG,i)  

8.  if exists vertex-dominator v in FG,i(rG,i) then 

9.  S ← TopSCC Without(Gi \ {v}, BG,i) 

10.  return (S, {v}) 

11. else if |BG,i| = 1 and ∃ tSCC ( V \ {rG,i} in Gi \ 

{rG,i} then 

12.  S ← TopSCC(Gi \ {rG,i}) 

13.      return (S, {rG,i}) 

14. return (∅, ∅). 

Theorem 3.4.3.1Let G be a simple directed graph. 

The algorithm computes the 2vSCCs of G in O(n2). 

By stopping the recursion when the number of 

vertices is a small constant and 

distinguishingbetween the number of vertices n, at 

the current level of the recursion and the total number 

of vertices n, we can show that the runtime of O(n, 

min{|S|, |V \ S|}) without recursion leads to a total 

runtime of O(n2). 

3.5. Authors: T Wang, Y Zong[16] 

Previous works focused on finding the k-edge-

connected components when k is given in advance, 

especially for some small k, e.g., k = 2, k = 3, or the 

input graph is an undirected graph. Our algorithm can 

give answers for all possible values of k, and for both 

directed and undirected, simple graph or multiple 

graphs.If the capacity of each edge is regarded as 

one, computing k-edge-connected component can be 

solved by executing an algorithm for max-flow (or 

min-cut, by the max-flow min-cut). Since the 

cardinality of the minimum edge-cut separating 

vertices a and b is the number of edge-disjoint paths 

between a and b, a naive idea is to run an s-t min-cut 

algorithm for each pair of vertices on the graph. If we 

use an O(n3) time algorithm proposed by Goldberg 

and Tarjan [19], we can achieve an O(n5) time 

algorithm to get the min-cut of any two vertices. The 

other method is to use the global min-cut algorithm 

proposed by Stoer and Wagner [17], which finds the 

global min-cut in O(mn + n2 log n) time. If the min-

cut capacity is more than k, the graph is a k-edge-

connected component; otherwise, any two vertices 

separated by the cut cannot be in the same k-edge-

connected component. In the worst case, the global 

min-cut algorithm can be executed n – 1 rounds, 

leading to an O(n2m + n3 log n) time algorithm.In this 

paper, we give a simple algorithm to find the k-edge-

connected components for all k in a directed or 

undirected, simple or multiple graph. We use an s-

t max-flow algorithm as the basic procedure which is 

executed 2n − 2 rounds to construct an auxiliary 

graph to store information concerning the edge-

connectivity between all vertex pairs of the input 

graph. The time complexity to construct the auxiliary 

graph is O(Fn), where F is the time required to 

compute the maximal flow between two vertices in 

graph G, e.g., for the maximal flow algorithm of Ford 

and Fulkerson [18], F = O(fm), where f  is the 

maximal value of all pairs of maximal flows, and for 

the algorithm by Goldberg and Tarjan 

[19], F = O(n3).Furthermore, any improvement made 

on F automatically implies improvement on the time 

complexity of our algorithm.After the auxiliary graph 

is constructed, for any value of k, the k-edge-

connected components can then be determined by 

traversing the auxiliary graph in O(n) time by a 

simple scan over the auxiliary graph. 

Algorithm : Construction(G(V, E), s, N) 

 If N = {s} 

  Return. 

 Randomly pick a vertex t from N − {s}. 

 (x, S, T) ≔ s-t max-flow(G, s, t). 

 (x′, T′, S′) ≔ s-t max-flow(G, t, s). 

 If x′ < x 

  x ≔ x′, S ≔ S′, T ≔ T′ 

 Add edge (s, t) with weight x to A 

 Construction(G, s, N ∩ S) 

 Construction(G, t, N ∩ T) 
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Lemma 3.5.1. There are n − 1 calls of 

procedure Construction. 

Proof. Since each call of procedure 

Construction adds an edge to A, and there are n − 1 

edges in the finished A, there are n − 1 calls of 

procedure Construction. 

Theorem 3. 5.1. The preprocessing phase takes 

O(Fn) time and the query phase takes O(n) time per 

query, where F is the time to compute the maximal 

flow for two vertices in graph G. 

Proof.  Procedure Construction is called n − 1 times. 

In procedure Construction, the basic algorithm for 

finding the maximal flow and runs in O(F) time is 

executed for n − 1 times. Therefore, the 

preprocessing phase takes O(Fn) time. (Note: if we 

use the Ford-Fulkerson algorithm [18] to compute the 

max-flow, the total time complexity is O(fmn), 

where f is the maximal value of all pair of maximal 

flows.Since each query initiates a DFS traversal 

over A, the query time is thus O(m + n). Since the 

vertex set of Ais V and ∣V∣ = n, and m = ∣EA∣ = n − 1 

the query time is O(n). 

3.6.Authors:L.GEORGIADIS,G. ITALIANO, L. 

LAURA, N. PAROSTSIDIS 

Although Algorithmsrun in O(mn) time, they show 

that a careful combination of them gives linear-time 

algorithm.The critical observationis that if a strong 

bridge separates different pairs of verticesin 

successive recursive calls which cause the worst-case 

behavior of Algorithm 

Algorithm Fast2ECB 

1. Chose an arbitrary vertex s € V as a start vertex. 

Compute the dominator tree D(s) and the bridges 

of the flow graph G(s). 

2. Partition D(s) into subtrees T(r) and compute the 

corresponding auxiliary graphs Gr. 

3. For each auxiliary graph H = Grdo: 

4. Compute the dominator tree DR
H(r) and bridges 

of HR(r). Let dH
R(q) be the parent of q≠ r in DR

H 

(r). 

5. Partition DR
H (r) into the subtrees TH(q). 

Compute the corresponding auxiliary graphs Hq 

with q ≠ r. 

6. Set [r] to consist of the ordinary vertices TH(r). 

7. For each auxiliary graph Hq with q ≠ r do 

8. Compute the strongly connected components S1, 

S2,….Sk. 

9. Partition the ordinary vertices of Hq into blocks 

according to each sj, j = 1,….k; For each 

ordinary vertex v, [v]2e contains the ordinary 

vertices in the strongly connected component of 

v. 

LEMMA 3. 6.1. If G(s) has b bridges, then all the 

auxiliary graphs Gr have at most n+2bvertices and 

m+ 2b edges in total. 

PROOF. Every vertex appears as an ordinary vertex 

only in one auxiliary graph. Amarked vertex in D(s) 

corresponds to a bridge in G(s), so there are b ≤ n− 1 

markedvertices. Since we have one auxiliary graph 

for each marked vertex, the total numberof the 

auxiliary vertices d(r) is b. Each marked vertex v can 

also appear in at most oneother auxiliary graph as a 

child of a boundary vertex. So, the total number of 

verticesis at most n + 2b. Next, we bound the total 

number of edges. Excluding bridges, thetotal number 

of edges between two ordinary vertices or between an 

ordinary vertexand an auxiliary vertex in all auxiliary 

graphs is at most m−b. Each bridge can appearin at 

most two auxiliary graphs. It remains to count the 

number of edges between twoauxiliary vertices. Each 

such edge is of the form (w, d(r)), where w and r are 

roots inthe canonical decomposition, and moreover, 

w is a marked child of a boundary vertexin the 

auxiliary graph Gr. Hence, there is at most one such 

edge leaving each markedvertex, so at most b overall. 

The total number of edges in all auxiliary graphs is 

then bounded by m−b+ 2b+ b = m+ 2b. 

LEMMA 3.6.2.Any digraph with n vertices has at 

most 2n− 2 strong bridges. 

Experimental studies for algorithms that compute 

dominators, strong bridges, andstrong articulation 

points are presented in Firmani et al. [2012] and 

Georgiadis et al.[2014]. The experimental results 

show that the corresponding fast algorithms given 

inFraczak et al. [2013], Italiano et al. [2012], 

Lengauer and Tarjan [1979], and Tarjan[1976] 

perform very well in practice, even on very large 

graphs. 
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LEMMA 3.6.3. Algorithm Fast2ECB runs in O(m) 

time. 

PROOF. We analyze the total time spent on each step 

that Algorithm Fast 2ECB executes. Step 1 takes 

O(m) time by Buchsbaum et al. [2008], and Step 2 

takes O(m) time by Lemma 3.13. From Lemma 6.1, 

we have that the total number of verticesand the total 

number of edges in all auxiliary graphs H of G are 

O(n) and O(m),respectively. Therefore, the total 

number of strong bridges in these auxiliary graphs is 

O(n) by Lemma 2.1. Then, by Lemma 3.9, the total 

size (number of vertices and edges)of all auxiliary 

graphs HRq for all H, computed in Step 5, is still 

O(m), and they arealso computed in O(m) total time 

by Lemma 3.13. So, Steps 5 and 7 take O(m) time in 

total, as well. 

IV.CONCLUSION 

In this paper, we have  surveyed important algorithms 

for finding out 2-connectivity in directed graphs, 

which are harder than their counterparts on the 

undirected graph.This recent lot of work has raised 

some interesting questions, whether the 2-edge 

connected or 2-vertex connected components can be 

computed in linear time?. Moreover, the dynamic 

maintenance of 2-edge and 2-vertex connectivity in 

directed graph deserves further investigation. 
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