
International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 2 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 130

Survey on 2-connectivity in Directed Graphs

T.Manohar Reddy*1, Dr.P.Chandra Sekhar

PG Student, Department of CSE, JNT University, Ananthapur, AP

Department of CSE, SK University, Ananthapur, AP

ABSTRACT

In this paper, the Survey of some recent

results on graph connectivity problems like 2-vertex

connectivity and 2-edge connectivity problems in

directed graphs have been discussed. 2-vertex and 2-

edge connectivity problems in directed graphs are

more difficult than on undirected graphs. By using

depth first search 2-edge and 2-vertex connectivity,

bridges, articulation points can be computed in linear

time for undirected graphs. In the case of a directed

graph, the same problems have been much more

challenging and required the development of new

ideas and techniques.

I.INTRODUCTION

Connectivity is a fundamental concept in graph

theory. A lot of work done in the case of a undirected

graph, but not much has been studied for directed

graphs. In this survey, we are summarizing the 2-

vertex and 2-edge connectivity for directed graphs,

the concepts of graph theory. The definition of

connectivity given by Douglas West [1] as a

separating set or vertex cut of a graph is a set S is a

subset of V(G)such that G – S has more than one

component. The Connectivity of G, written k(G), is

minimum size set S such that G – S is disconnected

or has only one vertex. A graph is k-connected if it

has connectivity is at least k. A graph with more than

two vertices has connectivity 1 if and only if it is

connected and has a cutvertex. A graph with more

than one vertex has connectivity 0 if and only if it is

disconnected.

 Douglas West [1,4.1.7] defined, A disconnecting

setof edges is a set F ⊆ E(G) such that G – F has

more than one component. A graph is k-edge

connected if every disconnecting set has at least k

edges, The edge-connectivity of G is a minimum

size of a disconnecting set. A maximal connected

subgraph that has no cut-vertex is a block.

II.FUNDAMENTAL CONCEPTS

2.1 Connectivity in Undirected Graphs

In an undirected graph G, if we remove any edge,

then the number of connected components will

increase, such that the removal edge known as a

bridge.In a graph, if no bridges exist then the graph is

2-edge connected.

Figure 1 undirected graph

Figure 2 2-edge connected components

In figure1and Figure 2, we have shown bridges and

2-edge connected components for an undirected

graph. By Menger’s Theorem[2], any two vertices

are 2-edge connected if and only if a number of

connected components will not increase if we remove

an edge from the graph G.

In an undirected graph G, if we remove any vertex,

then the number of connected components will

increase, then removal vertex is known as

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 2 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 131

anarticulation point.In a graph no articulation point

present then the graph is 2-vertex connected.

Figure 3 The articulation points of Graph

Figure 4 2-vertex connected components

By using depth-first search [4] we can compute

bridges, articulation points, 2-edge connected

components and 2-vertex connected components in

linear time.

2.2 Connectivity in Directed Graphs

In a directed graph G, if we remove an edge(resp.. a

vertex), thena number of strongly connected

components, the removal edge known as astrong

bridge(a strong articulation point)[10].In a directed

graph if no strong bridge(strong articulation point)

exists, then graph the graph is 2-edgeconnected(2-

vertex connected). Two vertices, let us say v and u,

are 2-edge connected(resp..2-vertex connected) if it

has two edge-disjoint (two vertex-disjoint) paths

from v to u as well as u to v should be present.

Figure 5 (a) strongly connected directed graph.(b) 2-

vertex connected components. (c) 2-vertex connected

blocks. (d) 2-edge connected components. (e) 2-edge

connected blocks.

III.LITERTURE SURVEY

ALGORITHMS FOR CONNECTIVITY IN

DIRECTED GRAPHS

3.1 Authors: Erusalimskii, Svetlov [6]

In this algorithm, authors proposed that it reduces 2-

vertex connected components problem of thedirected

graph to the 2-vertex connected components of the

undirected graph. But they did not analyze the time

complexity of theproblem.

METHOD:

1. Repeat

2. Compute the connected components

3. Remove the strong bridges

4. For every vertex do

5. Compute the connected components

6. Remove the strong bridges

7. Until no edge to remove on step 6

8. Compute 2-connected components

The authors did not analyze the time complexity of

above algorithm, but Jaberi[5]showed that the

algorithm will take O(nm2) time which has a huge

gap between directed and undirected graph.the

authors provided an algorithm for computing all

biblocks of a directed graph, where the biblocks of a

directed graph are its maximal strongly

connectedsubgraphs that do not contain any strong

articulation point. A biblock is either a 2-vcc, a single

vertex or two vertices which are connected by two

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 2 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 132

antiparallel edges.In this paper, we are only interested

in computing the 2-vccs of a directed graph. LetG =

(V,E) be a strongly connected graph, and let v be a

strong articulation pointin G. Then the vertex v does

not necessarily occur in two or more 2-vccs of G.

Theorem:The running time of thealgorithm is

O(nm2).

Proof. The number of iterations of the repeat-loop is

at most m since at least oneedge is removed in each

iteration. The strongly connected components of a

directedgraph can be found in linear time using

Tarjan’s algorithm. In each iteration ofthe repeat-

loop, steps 4–7 require O(n(n + m)) time. The 2-

connected componentsof an undirected graph can be

computed in linear time using Tarjan’s

algorithm.Thus, the total running time of Algorithm

is O(m(n(m + n))) = O(nm2).

3.2 Nagamochi, Watanabe[9]

Nagamochi and Watanabe used max-flow algorithm

to determine the edge weights in the auxiliary graph.

METHOD:

In theprocedure, the algorithm picks the random

vertex from the input graph G, then runs the max-

flow algorithm to find out the max-flow from the

sourcevertex to randomly picked vertex in the first

step. Then determine the min-cut from all max-flow,

which is nothing but minimum max-flow among all

max-flows. The min –cut edge added to the auxiliary

graph. This procedure calls recursively.After the

auxiliary graph constructed k-edge connected

components can be constructed by removing all

edges whose max-flow value less than k.The

algorithm time complexity is O(Fmn), where F is the

time taken for computing max-flow and m,n

arenumber of edges and vertices in the input graph G.

This algorithm not only for 2-connectivity and also

computes the k-connected components, where k

might be any value greater than or equal to one.

3.3 Authors: Jaberi [6]

In this method, Author investigates the relationship

between 2-vertex connected components and

dominator trees and also proposed an algorithm for 3-

vertex connected components. And it takes O(nm2)in

theworst case, of graph G which contain m edges and

n vertices.

Method:

1. If G is 2-vertex connected then output v

2. else

3. Compute the strong articulation points

4. Chose a vertex such that is a strong articulation

point

5. Compute dominator trees

6. Chose a dominator tree of that contains more

non-trivial dominators

7. for each vertex V do

8. if |M(v)| ≥ 2 then

9. compute the strongly connected components

10. for each strongly connected component do

11. if |C| ≥ 3 then

12. Recursively compute the 2-vertex connected

components of G[C]

13. Else

14. Recursively compute 2-VCC of G[w]U[w] and

output them.

Theorem 3,1.The algorithm runs in O(nm) time.

Proof. The dominators of a flowgraph can be found

in linear time [15,14]. The strongarticulation points

of a directed graph can also be computed in linear

time using thealgorithm of Italiano et al. [12].

Furthermore, the strongly connected components of a

directed graph can be computed in linear time using

Tarjan’s algorithm [13]. Ateach level of the

recursion, atleast one vertex must be removed in lines

4–5 or the setof vertices must be split in lines 6–10.

Hence, the recursion depth is at most n. Fixsome

recursion level. We consider the cost of the calls of

the procedure exceptingthe recursion. For one call,

the cost is linear in the size of the current subgraph.

LetG′[C1 ∪ {v}] = (V1,E1),G′[C2 ∪ {v}] = (V2,E2),

. . . ,G′[Ct ∪ {v}] = (Vt,Et) be thesubgraphs of the

directed graph G′ = (V ′,E′) considered on this level

in all calls.Then P1≤i≤t |Ei| ≤ |E′| since the strongly

connected components of G′ are disjoint.The total

cost at each level of the recursion is, therefore,

O(nm).we have abase condition such that a graph 2-

vertex connected, it should have atleast 3 vertices.

Finding strong articulation points we use simple

breadth first search algorithm which takes only

O(m+n) linear time. To find dominator tree we

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 2 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 133

should find all dominator of the subgraph. Vertex u is

said to be dominator of vertex v in graph G if every

path from the source vertex to vertex v in graph G

contains vertexu. Lengauer and Tarjan [7] presented

an algorithm for computing dominators inO(mα(m,n))

time for graph G which has m edges and n vertices, α

is an Ackermann’s[8] inverse function. Overall time

for above method is O(nm) in the worst case. If a

strong bridge separates pairs of vertices in successive

recursive calls which cause the worst behavior of this

method, then it will appear as the strong bridge

entering the root of a subtree of a dominator tree

3.4 Authors:M.Henzinger, S.Krinninge,and

V.Loitzenbauer

The authors present algorithms that compute the

2eSCCs and the 2vSCCs of a directed graph in O(n2)

time. For 2eSCCs we additionally provide an

algorithm that runs in O(m2/ log n) time, which is

faster than O(n2) if m = O(n).Thus they significantly

improve upon the previous O(mn)-time algorithms

for both 2eSCCs and 2vSCCs. For 2eSCCs the

previous upper bound stood for 20 years. This

approach immediately generalizes to computing the

k-edge strongly connected components (keSCCs) and

the k-vertex strongly connected components

(kvSCCs). We give algorithms that, for any integral

constant k > 2, compute (1) the keSCCs in time

O(n2log n) improving upon the previous upper bound

of O(mn) and (2) the kvSCCs in time O(n3)

improving upon the previous upper bound of O(mn2).

1. for i ← 1 to [log γ] − 1 do

2. 2 (S, Z) ← 2IsolatedSetLevel(G, i) Z contains v

if G[S] is almost top or bottom SCC w.r.t. v

3. if S ≠∅ then

4. return 2vSCC(G[S ∪ Z]) ∪ 2vSCC(G[V \ S]).

5. (S, Z) ← 2IsolatedSet(G) /* Z contains v if G[S]

is almost top SCC w.r.t. v */

6. if S ≠∅ then

7. return 2vSCC(G[S ∪ Z]) ∪ 2vSCC(G[V \ S])

8. else

9. return {G}

Let S be a set of at most 2 i vertices that induces a

strongly connected subgraph G[S] of G such that

G[S] is a top SCC or an almost top SCC with respect

to some vertex v. Since the only edges from vertices

of V \ S to S are from v, the in-degree of each vertex

in S can be at most 2i . By applying the results from

the previous section, we show that we can detect such

a set S by searching for SCCs and vertex-dominators

in the graphs FG,i constructed from Gi with the

artificial root G.

Lemma 3.4.1. If a set of vertices S with |S| ≤ 2i

induces a tSCC or an almost tSCC in G with respect

to some vertex v, then S ⊆ V \ BG,i.

 To find bSCCs and almost bSCCs we also search for

top SCCs in Rev(G). The search for both top and

bottom SCCs ensures that whenever an (almost)

tSCC and a disjoint (almost) bSCC exist in G, we

only spend time proportional to the smaller one. This

search is performed in Procedure 2Isolated Set Level,

which fulfills the following guarantee.

Lemma3.4.2. If for some integer 1 ≤ i < log γ and G

∈ {G, Rev(G)} there exists a set of vertices T ⊆ V \

BG,i that induces in G a tSCC or an almost tSCC

with respect to some vertex v with T (V \ {v}, then

2IsolatedSetLevel(G, i) returns a non-empty set S.

In Procedure 2vSCC we start the search for (almost)

top SCCs at i = 1. Whenever the search is not

successful, we increase i by one, until we have Gi =

G or Rev(G) i = Rev(G). For the search the Procedure

2IsolatedSetLevel is used as long as 2 i< γ, i.e., both

BG,iand Brev(G),i are non-empty, and the Procedure

2IsolatedSetafterwards. Procedure 2IsolatedSet

identifies an (almost) top SCC in G if one exists by

using the known procedures for finding SCCs and

articulation points. In this way, we can show that

whenever we had to go up to i or had to use

Procedure 2IsolatedSet to identify an (almost) top or

bottom SCC in G, the identified subgraph contains

Ω(2i) vertices, where i = [log γ] for Procedure

2Isolated Set This will imply that the search in Gi

and Rev(G) i for i up to i∗ takes time O(n2i∗) which is

O(n · min{|S|, |V \ S|}). This will allow us to bound

the total running time by O(n2).Whenever the

algorithm identifies an (almost) top or bottom SCC

induced by a set of vertices S, it recursively calls

itself on G[S ∪ Z] and G[V \ S] for Z = ∅ or Z = {v},

respectively. Every 2vSCC of G is completely

contained in either G[S ∪ Z] or G[V \ S], which will

imply the correctness of the algorithm.

Procedure:

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 2 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 134

1. foreach G ∈ {G, Rev(G)} do

2. construct Gi = (V, Ei) with Ei = ∪v∈V {first 2 i

edges in InG(v)}

3. BG,i = {v | IndegG (v) > 2 i}

4. S ← TopSCCWithout(Gi ,BG,i)

5. if S ≠∅ then

6. return (S, ∅)

7. construct flow graph FG, i(rG,i)

8. if exists vertex-dominator v in FG,i(rG,i) then

9. S ← TopSCC Without(Gi \ {v}, BG,i)

10. return (S, {v})

11. else if |BG,i| = 1 and ∃ tSCC (V \ {rG,i} in Gi \

{rG,i} then

12. S ← TopSCC(Gi \ {rG,i})

13. return (S, {rG,i})

14. return (∅, ∅).

Theorem 3.4.3.1Let G be a simple directed graph.

The algorithm computes the 2vSCCs of G in O(n2).

By stopping the recursion when the number of

vertices is a small constant and

distinguishingbetween the number of vertices n, at

the current level of the recursion and the total number

of vertices n, we can show that the runtime of O(n,

min{|S|, |V \ S|}) without recursion leads to a total

runtime of O(n2).

3.5. Authors: T Wang, Y Zong[16]

Previous works focused on finding the k-edge-

connected components when k is given in advance,

especially for some small k, e.g., k = 2, k = 3, or the

input graph is an undirected graph. Our algorithm can

give answers for all possible values of k, and for both

directed and undirected, simple graph or multiple

graphs.If the capacity of each edge is regarded as

one, computing k-edge-connected component can be

solved by executing an algorithm for max-flow (or

min-cut, by the max-flow min-cut). Since the

cardinality of the minimum edge-cut separating

vertices a and b is the number of edge-disjoint paths

between a and b, a naive idea is to run an s-t min-cut

algorithm for each pair of vertices on the graph. If we

use an O(n3) time algorithm proposed by Goldberg

and Tarjan [19], we can achieve an O(n5) time

algorithm to get the min-cut of any two vertices. The

other method is to use the global min-cut algorithm

proposed by Stoer and Wagner [17], which finds the

global min-cut in O(mn + n2 log n) time. If the min-

cut capacity is more than k, the graph is a k-edge-

connected component; otherwise, any two vertices

separated by the cut cannot be in the same k-edge-

connected component. In the worst case, the global

min-cut algorithm can be executed n – 1 rounds,

leading to an O(n2m + n3 log n) time algorithm.In this

paper, we give a simple algorithm to find the k-edge-

connected components for all k in a directed or

undirected, simple or multiple graph. We use an s-

t max-flow algorithm as the basic procedure which is

executed 2n − 2 rounds to construct an auxiliary

graph to store information concerning the edge-

connectivity between all vertex pairs of the input

graph. The time complexity to construct the auxiliary

graph is O(Fn), where F is the time required to

compute the maximal flow between two vertices in

graph G, e.g., for the maximal flow algorithm of Ford

and Fulkerson [18], F = O(fm), where f is the

maximal value of all pairs of maximal flows, and for

the algorithm by Goldberg and Tarjan

[19], F = O(n3).Furthermore, any improvement made

on F automatically implies improvement on the time

complexity of our algorithm.After the auxiliary graph

is constructed, for any value of k, the k-edge-

connected components can then be determined by

traversing the auxiliary graph in O(n) time by a

simple scan over the auxiliary graph.

Algorithm : Construction(G(V, E), s, N)

 If N = {s}

 Return.

 Randomly pick a vertex t from N − {s}.

 (x, S, T) ≔ s-t max-flow(G, s, t).

 (x′, T′, S′) ≔ s-t max-flow(G, t, s).

 If x′ < x

 x ≔ x′, S ≔ S′, T ≔ T′

 Add edge (s, t) with weight x to A

 Construction(G, s, N ∩ S)

 Construction(G, t, N ∩ T)

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 2 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 135

Lemma 3.5.1. There are n − 1 calls of

procedure Construction.

Proof. Since each call of procedure

Construction adds an edge to A, and there are n − 1

edges in the finished A, there are n − 1 calls of

procedure Construction.

Theorem 3. 5.1. The preprocessing phase takes

O(Fn) time and the query phase takes O(n) time per

query, where F is the time to compute the maximal

flow for two vertices in graph G.

Proof. Procedure Construction is called n − 1 times.

In procedure Construction, the basic algorithm for

finding the maximal flow and runs in O(F) time is

executed for n − 1 times. Therefore, the

preprocessing phase takes O(Fn) time. (Note: if we

use the Ford-Fulkerson algorithm [18] to compute the

max-flow, the total time complexity is O(fmn),

where f is the maximal value of all pair of maximal

flows.Since each query initiates a DFS traversal

over A, the query time is thus O(m + n). Since the

vertex set of Ais V and ∣V∣ = n, and m = ∣EA∣ = n − 1

the query time is O(n).

3.6.Authors:L.GEORGIADIS,G. ITALIANO, L.

LAURA, N. PAROSTSIDIS

Although Algorithmsrun in O(mn) time, they show

that a careful combination of them gives linear-time

algorithm.The critical observationis that if a strong

bridge separates different pairs of verticesin

successive recursive calls which cause the worst-case

behavior of Algorithm

Algorithm Fast2ECB

1. Chose an arbitrary vertex s € V as a start vertex.

Compute the dominator tree D(s) and the bridges

of the flow graph G(s).

2. Partition D(s) into subtrees T(r) and compute the

corresponding auxiliary graphs Gr.

3. For each auxiliary graph H = Grdo:

4. Compute the dominator tree DR
H(r) and bridges

of HR(r). Let dH
R(q) be the parent of q≠ r in DR

H

(r).

5. Partition DR
H (r) into the subtrees TH(q).

Compute the corresponding auxiliary graphs Hq

with q ≠ r.

6. Set [r] to consist of the ordinary vertices TH(r).

7. For each auxiliary graph Hq with q ≠ r do

8. Compute the strongly connected components S1,

S2,….Sk.

9. Partition the ordinary vertices of Hq into blocks

according to each sj, j = 1,….k; For each

ordinary vertex v, [v]2e contains the ordinary

vertices in the strongly connected component of

v.

LEMMA 3. 6.1. If G(s) has b bridges, then all the

auxiliary graphs Gr have at most n+2bvertices and

m+ 2b edges in total.

PROOF. Every vertex appears as an ordinary vertex

only in one auxiliary graph. Amarked vertex in D(s)

corresponds to a bridge in G(s), so there are b ≤ n− 1

markedvertices. Since we have one auxiliary graph

for each marked vertex, the total numberof the

auxiliary vertices d(r) is b. Each marked vertex v can

also appear in at most oneother auxiliary graph as a

child of a boundary vertex. So, the total number of

verticesis at most n + 2b. Next, we bound the total

number of edges. Excluding bridges, thetotal number

of edges between two ordinary vertices or between an

ordinary vertexand an auxiliary vertex in all auxiliary

graphs is at most m−b. Each bridge can appearin at

most two auxiliary graphs. It remains to count the

number of edges between twoauxiliary vertices. Each

such edge is of the form (w, d(r)), where w and r are

roots inthe canonical decomposition, and moreover,

w is a marked child of a boundary vertexin the

auxiliary graph Gr. Hence, there is at most one such

edge leaving each markedvertex, so at most b overall.

The total number of edges in all auxiliary graphs is

then bounded by m−b+ 2b+ b = m+ 2b.

LEMMA 3.6.2.Any digraph with n vertices has at

most 2n− 2 strong bridges.

Experimental studies for algorithms that compute

dominators, strong bridges, andstrong articulation

points are presented in Firmani et al. [2012] and

Georgiadis et al.[2014]. The experimental results

show that the corresponding fast algorithms given

inFraczak et al. [2013], Italiano et al. [2012],

Lengauer and Tarjan [1979], and Tarjan[1976]

perform very well in practice, even on very large

graphs.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 2 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 136

LEMMA 3.6.3. Algorithm Fast2ECB runs in O(m)

time.

PROOF. We analyze the total time spent on each step

that Algorithm Fast 2ECB executes. Step 1 takes

O(m) time by Buchsbaum et al. [2008], and Step 2

takes O(m) time by Lemma 3.13. From Lemma 6.1,

we have that the total number of verticesand the total

number of edges in all auxiliary graphs H of G are

O(n) and O(m),respectively. Therefore, the total

number of strong bridges in these auxiliary graphs is

O(n) by Lemma 2.1. Then, by Lemma 3.9, the total

size (number of vertices and edges)of all auxiliary

graphs HRq for all H, computed in Step 5, is still

O(m), and they arealso computed in O(m) total time

by Lemma 3.13. So, Steps 5 and 7 take O(m) time in

total, as well.

IV.CONCLUSION

In this paper, we have surveyed important algorithms

for finding out 2-connectivity in directed graphs,

which are harder than their counterparts on the

undirected graph.This recent lot of work has raised

some interesting questions, whether the 2-edge

connected or 2-vertex connected components can be

computed in linear time?. Moreover, the dynamic

maintenance of 2-edge and 2-vertex connectivity in

directed graph deserves further investigation.

V.REFERENCES

1 Douglas West. Introduction to Graph Theory second

edition.

2 K. Menger. ZurAllgemeinekurventheorie. Fund. Math.,

10:96–115, 1927.

3 http://www.geeksforgeeks.org/tag/graph-connectivity

4 https://www.hackerearth.com/practice/algorithms/graphs/de

pth-first-search/tutorial

5 R. Jaberi. Computing the 2-blocks of directed graphs.

RAIRO-Theor. Inf.

Appl.,49(2):93119,2015.doi:10.1051/ita/2015001.

6 R. Jaberi. On computing the 2-vertex-connected

components of directed graphs.DiscreteApplied

Mathematics, 204:164–172,2016.

doi:10.1016/j.dam.2015.10.001.

7 T. Lengauer and R. E. Tarjan. A fast algorithm for finding

dominators in a flowgraph. ACM Transactions on

Programming Languages and Systems, 1(1):121–41, 1979

8 http://www.dcc.fc.up.pt/~acm/PRinv.pdf

9 H. Nagamochi and T.Watanabe. Computing k-edge-

connected components of a multigraph.IEICE Transactions

on Fundamentals of Electronics, Communications and

Computer Sciences,E76–A(4):513–517, 1993

10 G. F. Italiano, L. Laura, F. Santaroni, Finding strong

bridges and strong articulation points in linear time,

Theoretical Computer Science. 447 (2012) 74–84.

11 R. Diestel, Graph Theory, 2nd ed., Springer, New York,

2000, pp. 43–44.

12 G. F. Italiano, L. Laura, F. Santaroni, Finding strong

bridges and strong articulation points in linear time,

Theoretical Computer Science. 447 (2012) 74–84.

13 R. E. Tarjan, Depth-first search and linear graph algorithms,

SIAM J. Comput.1(2) (1972) 146–160.

14 S. Alstrup, D. Harel, P.W. Lauridsen, M. Thorup,

Dominators in linear time.SIAM J. Comput. 28(6) (1999)

2117–2132.

15 A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R.

E. Tarjan, J. R.Westbrook, Linear-time algorithms for

dominators and other path-evaluationproblems,SIAM

J.Comput. 38(4) (2008) 1533–1573.

16 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569431/

17 Stoer M. and Wagner F., A simple min-cut algorithm, J.

ACM 44(4), 1997. doi: 10.1145/263867.263872

18 Ford L. R. and Fulkerson D. R., Flows in

Networks, Princeton University Press Princeton, New

Jersey, 1962

19 Goldberg A. V. and Tarjan R. E., A new approach to

maximum flow problem, J. ACM 35(4), 1988.

doi: 10.1145/48014.61051

20 D. Firmani, G. F. Italiano, L. Laura, A. Orlandi, and F.

Santaroni. 2012. Computing strong articulationpoints and

strong bridges in large scale graphs. In Proceedings of the

10th International Symposium on Experimental Algorithms.

195–207.

21 W. Fraczak, L. Georgiadis, A. Miller, and R. E. Tarjan.

2013. Finding Dominators via disjoint set union.Journal of

Discrete Algorithms

23,DOI:http://dx.doi.org/10.1016/j.jda.2013.10.003

22 A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R.

E. Tarjan, and J. R. Westbrook. 2008. Lineartimealgorithms

for dominators and other path-evaluation problems. SIAM

J. Comput. 38, 4 (2008)

