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Abstract—thejoin operator in relational databases 

is one of the most IO intensive operations. Thelarge 

size of input relations makes it hard to fit them 

entirely in RAM during join processing. Therefore 
therelations are processed in chucks inside a RAM 

buffer of limited size.The ideabehindasuccessfuljoin 

algorithm is to make the most efficient use of the 

limited sized buffer to minimizethenumberof IOs. 

The hash join algorithm has been a popular 

algorithm due to its relativelylowIOcostscompared 

to other methods. In this paper we make the 

observation that the performanceofthehash join can 

be dramatically improved if we take advantage of 

skewed distributionsandmissingvalues in join 

attributes. We propose the filtered hash join (FH-
join) which filtersouttuplesoftheinput relations 

during the partitioning phase of the hash join to 

minimize the workleft forthejoinphase. The results 

show FH-join can outperform the hybrid hash join 

by up to a factor 4 in terms of total execution time 

when the data is much skewed. 
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I. INTRODUCTION 

It is commonly accepted that the join operator is 

often the most expensive operator when executing a 
database query. For example Hayes et al. [1] found 

the join operator on average accounts for 60% of the 

processing time across all the queries of the TPC-H 

benchmark. 

Currently most relational databases are disk based 

where RAM is used as a temporary buffer for 

keeping recently or commonly referenced data. 

Typically a portion of the RAM space is reserved for 

join query processing, however this space may not 

beenough to fit any of the join relations in their 

entirety. In this case the join needs to be processed 
in parts, where each partprocesses a portion of the 

relations. Processing by parts usually means multiple 

passes through the data to complete the entire join. 

The aim of efficient join processing in the above 

environment is to process the join by incurring the 

minimum number of read and write IO. Write IO is 

used to write out intermediate data to disk during 

join processing. There has been many different 

classic approaches for solving this problem, 
including, the nested loops join, sort-merge join, 

indexed-loops join, hash join, etc. The hash join is 

often found to be the most desirable among the 

alternative approaches, due to its ability to prune the 

number of comparisons without the need to first sort 

the data or build an index, both of which are 

expensive operations. 

The classic GRACE and hybrid hash join methods 

[2] process the join in two phases. The first is the 

partitioning phase in which the input relations are 

scanned and written out into hash buckets. The 
second is the join phase where the two relations are 

joined one hash bucket at a time. The hybrid hash 

join differs from the above description by trying to 

join a subset of the tuples during the partitioning 

phase. It does this by keeping a memory resident 

hash bucket of the outer relation R during the 

partitioning phase. Then the tuples of the inner 

relation S that fall into the memory resident hash 

bucket are joined with the corresponding memory 

resident R tuples during the partitioning phase. This 

effectively filters out the tuples of the in-memory 

hash bucket from the join phase. It is better to make 
the outer relation R the smaller relation since this 

allows the in memory hash bucket occupy a larger 

percentage of total size of the outer relation. 

Recently, Do et al. [3] performed a 

comprehensive performance evaluation of join 

algorithms on both hard disk drives and solid state 

drives. They found that the hybrid hash join was 

almost always the best performer on both types of 

secondary storage. However, the performance of the 

hybrid hash join can be significantly improved 

because the hybrid hash join does not make efficient 
use of the RAM space during the partitioning phase. 

The hybrid hash join does not consider the data 

characteristics of the two relations when it 

determines which tuples of R to keep in RAM 

during the partitioning phase. In contrast we take 

advantage of skewed join attribute distributions and 
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missing values to magnify the benefit of joining 

tuples in the partitioning phase and thereby filter out 

a larger fraction of tuples from entering the join 

phase. 

Skewed join attribute distributions occur in many 

real life situations. For example, Customers ⋈ 
C.CustomerID=O.CustomerID Orders.  The number 

of orders per customer is usually skewed due to 

varied spending patterns of customers. For example, 

some customers buy regularly from a store whereas 

others shop rarely from the same store. Similarly the 

following join is likely to have skewed distributions, 

Orders ⋈O.ProductID=P.ProductID Products, 

because orders are typically of different sizes. 

There can be many join attribute values from one 

relation which maybe missing from the other and 
vice versa. This can occur due to a selection being 

applied before the join for one or both of the 

relations. For example for σC.State=NY Customers 

⋈C.CustomerID=O:CustomerID Orders, the 

selection on the Customers relation will likely mean 

that there are many orders in the Orders relation that 

will not find a match with the Customers relation. 

In this paper we propose the filtered hash join 

(FHjoin) which filters tuples out during the 

partitioning phase of the hash join. FH-join uses two 

types of filters which are designed to take advantage 
of join attribute distribution skew and missing join 

attribute values. The first is a range filter which 

keeps in RAM R tuples that fall in certain join 

attribute ranges during the partitioning phase and 

then joining them directly with S’s tuples as they are 

loaded during the partition phase. We keep the R 

range that simultaneously fit in RAM and also 

contains the largest number of S tuples. This allows 

us to take maximum advantage of skewed join 

attribute distributions. The second type of filter used 

is the bloom filter [4] which approximately records 
the presence or absence of individual join attribute 

values of the two relations. This is then used to filter 

out tuples of both R and S which have missing 

values in the opposing relation during the 

partitioning phase. 

We performed an extensive performance study of 

FH-join against the hybrid hash join algorithm. The 

results show the FH-join outperforms hybrid hash 

join on both the total execution time and the total IO 

cost in all tested scenarios by up a factor of 4 for 

total execution time and by up to an order of 

magnitude for write IO when the data is highly 
skewed. 

This paper makes the following key contributions: 

1) introduced the key observation that exploiting 

join attributeskew and missing values can 

dramatically improve the performance of the hash 

join; 2) proposed the FH-join algorithm which 

modifies the hash join to exploit these data 

characteristics; and 3) performed an extensive 

experimental study comparing the FH-join against 

the hybrid hash join algorithm. 

II. PRELIMINARES 

In this paper we are interested in performing an 

equi-join between two relations R and S. Throughout 

the entire paper we will use R to denote the outer 

relation and S to denote the inner relation. |R| will be 

used denote the size of relation R in terms of the 

number of pages, and similarly for S. B is the size of 

a page. We will assume there is a RAM limit of M 

pages. The outer relation R will also be the smaller 

of the two input relations. 

 We will use the phrase filtered out extensively 

throughout this paper. We define it as follows: a 
tuple is filtered out if itis not written out into a disk 

resident hash bucket during the partitioning phase. A 

filtered out tuple is effectively joined during the 

partitioning phase of the hash join and therefore is 

pruned from the entering the join phase. 

III. RELATED WORKS 

There are four fundamental approaches for joining 

two relations. These include the block nested-loops 

join, sort merge join, Indexed-loops join and hash 

join. We will first briefly discuss these four 

approaches and then we will discuss advanced hash 
jointechniques. We give a more detailed discussion 

on the hybrid hash join [2] in Section 4, since it is 

the most similar join techniquecompared to our FH-

join. See the paper by Mishra et. al.[5], Nooshin et.al. 

[6], and Balkesen et.al.[7]  for a 

comprehensivesurvey of classical join techniques. 

A. Fundamental join System 

 Block nested-loops join. The block nested-

loops join algorithm effectively processes the 
join using a nested for loop, where tuples are 

loaded into RAM at the block grain (multiple 

consecutive pages). The smaller relation is 

selected as the outer relation since these 

results in less passes through the inner relation. 

This approach performs comparisons between 

every pair of inner and outer relation tuples 

and therefore is very computationally 

expensive. If the outer relation is quite large 

compared to RAM size, then the block nested-

loops join is very IO intensive since it needs to 
take one pass through the inner relation per 

chuck of the outer relation that fit in RAM.  

 Sort-merge join. The sort-merge joins first 

sorts the two relations and then synchronously 

steps through the two relations in sorted order 

to perform the join. The sort-merge join 

performs less computation compared to the 

nested loops join since it uses the fact that the 

input relations are sorted to avoid comparisons 

between tuples that are far apart in sorted 

order. However, if the relations are not pre-

sorted then the cost of performing the sort can 
be expensive [6]. 

 Indexed-loops join. In this method an index 

on the inner relation is used to process the join. 
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The join works by looping through the outer 

relation, while probing the inner relation using 

the index. The index on the inner relation 

allows a lot of comparisons to be pruned. Note 

random IO is incurred when probing the index; 

this is expensive for hard disk drives (HDDs) 
due to the high seek cost. This random IO cost 

can be significantly reduced with the effective 

buffering of pages of the inner relation. 

Theindexed-loops join is only really useful if 

there is a pre-built index on the inner relation. 

Building the index on the fly is veryexpensive 

due to the large number of random IOs. 

 Hash join. The classic GRACE and hybrid 

hash join methods were described in the 

introduction. As already mentioned the 

strength of the hash join approach is that it can 

prune a lot of comparisons without the high 
pre-processing cost of sorting or building an 

index. Therefore it is often the preferred 

approach when the input relations are not 

sorted or pre-indexed [7]. 

B. Advanced hash join techniques 

The focus of this paper is on improving the 

performance ofthe hash join algorithm. Therefore in 

this section we willreview some the more recent 

advances in the area of hashjoin algorithms. 

Recent research [8, 9, 10, 11, 12, 13] has 

shownthat CPU processing occupies a significant 

portion of the total join processing time for the 

external hash join. This is due to the high cost of 

CPU cache misses and the fact the external hash join 

is very good at ensuring that all IO is sequential. 
Therefore a number of different approaches have 

been proposed to reduce CPU cache misses of the 

hash join. These techniques include pre-fetching [8], 

more temporal locality friendly reads and writes 

[10,11] and multi-threading [8, 9]. 

Boncz et al. [11] proposed the radix clustering 

approach for performing the hash partitioning in a 

CPU cache friendly way. The idea is to recursively 

partition data from course to finer and finer grained 

hash buckets. This approach reducesthe number of 

separate random locations written to at the same 

time. Therefore this approach is both more CPU 

cache and translation look aside buffer (TLB) 

friendly. The results show this approach can 
significantly reduce the partitioning cost of the hash 

join. 

Chen et al. [10] proposed two techniques for 
speeding up the GRACE hash join. The first is called 

group pre-fetching and the second is called software-

pipelined pre-fetching. The group pre-fetching 

technique apply modified forms of compiler 

transformations called strip mining and loop 

distribution to allow pipelining of consecutive probe 

tuples during the join phase. The results showed the 

proposed techniques can speed up the join phase by 

2.0-2.9X and speedup the partitioning phase by 1.4-

2.6X compared to the standard GRACE hash join.  

Following the pre-fetching work, Chen et al. [12] 

developed the inspector join. Their idea is to gather 

statistics about the join attribute values of the two 

input relations during the partitioning phase in order 

to speed up the CPU performance of the join phase. 

They use the statistics in two ways: 1) create 
specialized filter indexes (multiple small bloom 

filters); and 2) decide which join phase algorithm to 

use for the specific data being joined. They want to 

avoid having to do the multiple repartitioning passes 

of the radix clustering algorithm by creating a 

separate bloom filter for each sub-partition of R. The 

sub-partitions are sized such that both a sub-partition 

and its created hash table fit in the CPU cache. 

Using the bloom filters they are able to tell which R 

sub-partition each S tuple belongs to. This idea is 

used to avoid writing to random locations when 

creating the hash table during the join phase. They 
also use the bloom filters to prune tuples of S that do 

not match any R tuples. Their work differs from ours 

in two respects. First, unlike us they do not take 

advantage of skewed data distributions to filter both 

R and S tuples during the partition phase. Second, 

they build their bloom filters during the partition 

phase in contrast we use pre-built bloom filters. The 

benefit of prebuilt bloom filters is that we can prune 

both R and S tuples during the partitioning phase. 

Whereas the approach of Chen et al. [12] which can 

only prune tuples of S during the partitioning phase.  

Recently there has been a number of parallel hash 

join algorithms [8, 9] proposed. Kim et al. [8] 

compared the performance of sort merge join against 
hash join on modern multi-core CPUs. They found 

both join algorithms benefit greatly from multi-

threading and sort-merge join benefits greatly from 

exploiting SIMD. They predict sort-merge join will 

outperform hash join when 512-bit SIMD 

instructions become available.  

Blanas et al. [9] performed a thorough 

performance evaluation of existing hash join 

algorithms dissecting each internal phase and 

considering different alternatives for each phase. 

They found the partitioning phase does not benefit 

from multi-threading but the join phase can easily 

benefit from the added concurrency of multi-

threading.  

In contrast to all the above algorithms our 

algorithm is the only one to take advantage of data 

distribution and missing values to prune the number 
of tuples in both the R and S relations during the 

partitioning phase. Our approach can be used in 

conjunction with any of the above techniques to 

further improve hash join performance. 
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C. Other earlier work on hash joins 

Gray et al. [14] proposed an adaptive hash join 

algorithm that is designed to work with dynamic 

changes in the available memory. Martin et al. [15] 

performed a detailed study comparing the hashed 

loops; GRACE and Hybrid hash join algorithms for 

multi-processor environments. Kitsuregawa et al. 

[16] performed a study into how best to the tune the 

size of the hash buckets for the GRACE hash join 
algorithm. Kitsuregawa et al. [17] proposed a load 

balancing strategy for parallel hash join algorithms. 

Kitsuregawa et al. [18] performed a study into the 

performance of the GRACE hash join algorithm for 

the parallel disk environment. DeWitt et al. [19] 

proposed skew handling methods for parallel joins.  

None of the above techniques take data 

distribution or missing values into consideration 

when joining. The above techniques can all be 

enhanced by embedding our approach into their hash 

join algorithms.  

 

IV. ANALYSIS OF HYBRID HASH JOIN 

In this section we take a closer look at the hybrid 

hash join, in particular we will analyze the RAM 

buffer usage and IO costs of the hybrid hash join. 

We then identify how it can be improved.  

 

Figure 1 shows how the limited RAM space is 
allocated to separate buffers during the partitioning 

phase of the hybrid hash join. One input buffer (I) is 

used to read in the input relations in large sequential 

chunks. One output buffer (O) is allocated to each of 
the disk resident hash buckets to enable sequential 

writing. Finally the remaining RAM space called the 

workspace (WS) is used to keep an in-memory hash 

bucket of R. 

 

 
Fig.1 Partitioning the outer relation R in hybrid hash 

join 

 

The partitioning phases of the hybrid hash join 
works as follows. First one chuck of the outer 

relation R is loaded into the input buffer. Next each 

tuple in the input tuple is hashed. If a tuple is hashed 

into the in-memory hash bucket then it is placed into 

a second in-memory hash table located in the 

workspace. Tuples that hash to other buckets are 

placed in its corresponding out buffer. Whenever an 

output buffer becomes full, its contents are flushed 

into the corresponding disk-resident hash bucket. 
This process is repeated until all the tuples in R have 

been partitioned.  

The S relation is partitioned after R has been 
partitioned. The procedure for partitioning S is 

exactly the same as R except the tuples that hash into 

the in-memory hash bucket are immediately joined 

with the R tuple in the in-memory hash table. After 

S dataset has been partitioned. Then each of the 

disk-resident hash buckets of R and S are loaded in 

term into RAM and joined.  

Keeping the in-memory hash bucket of R in the 

workspace allows all tuples that map into that bucket 

to be joined during the partitioning phase. There is a 

trade-off between assigning a larger versus smaller 

workspace. A larger workspace allows more tuples 

to be joined in the partitioning phase and thus 

reduces the number of IO spent writing during the 
partitioning phase and loading the disk resident hash 

buckets during the join phase. However a larger 

workspace also reduces the size of the input and 

output buffers, thus making IO less sequential.There 

has been research [20] into determining the optimal 

allocation of the RAM space to the various 

buffers.This approach effectively assumes that the 

data distribution of R and S is uniform and therefore 

cannottakeadvantage of possible skew in the 

distribution of S values. For example we can take 

advantage of the skew in the distribution of S values 

by keeping ranges in WS that correspond to a larger 
fraction of S tuples. 

The hybrid hash join writes into a disk resident 

hash bucket any tuples that map into that bucket, this 
includes tuples that do not find a matching pair in 

the opposing relation. However, if we can somehow 

use a small part of WS to store information on the 

missing values of each relation, then we can use it to 

filter out the tuples during the partitioning phase that 

will definitely not find a match during the join phase. 

 

V. FILTERED HASH JOIN (FH-JOIN) 

In this section we present our FH-join algorithm 

that improves over the hybrid hash join by making 

much more effective use of the workspace WS to 

filter out a larger fraction of R and S by taking 
advantage of skewed data distributions and missing 

join attribute values. The aim of FH-join is therefore 

to maximize the following objective:  

 TUPLES  OF  R  𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑  𝑜𝑢𝑡   + |TUPLES  OF  S  FILTERED  OUT |

|WS |
  (1) 
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The above objective effectively says design an 

algorithm that filters out the most amounts of R and 

S per byte of WS available. We meet the above 

objective using two types of filters. The first is a 

range filter which selectively keeps attribute ranges 

in WS which filters out the largest fraction of S 
tuples. The second is a bloom filter that filters out 

tuples of R and S which do not have a matching pair 

in the opposing relation.  

Figure 2 shows how the filters are used in the 

partitioning phase of FH-join to filter out tuples from 

the join phase.  

 

 

 
Fig.2 Partitioning phase of FH-join for both R and S 

relations 
 

Figure 5(a) shows how the tuples of R are filtered 

out. The tuples of R are loaded into the RAM via the 

input buffer. They are then compared against the 

bloom filter of relation S. This filtered out tuples of 

R with join attribute values that are determined to be 

missing by the bloom filter of S. The surviving non-

filtered tuples are then stored in the in-memory hash 

table if they fall within the selected ranges of the 

range filter. Any tuples that pass through both of 

these filters are then placed into a disk resident hash 

bucket. Figure 5(b) shows the similar process for 

filteringS tuples. The difference is any tuples of S 
that fall within the selected ranges of the range filter 

are joined with the in-memory R tuples. 

 Algorithm 1 shows the high level algorithm of 

FH-join. The algorithm describes the pseudo code 

corresponding to the diagram in Figure 2. The 

algorithm uses histograms of R and S relations for 

creating the range filter. The histograms capture the 

frequency distribution of values within R and S. This 

is then used to select the value ranges of R which 

maps to a larger number of S tuples. The detailed 

algorithm for selecting ranges is described in Section 

5.1. Algorithm 1 assumes the histograms and bloom 

filter of R and S have been pre-built. In Sections 5.4 

and 5.6 we describe the cost of keeping the 
histograms and bloom filters up-to-date, respectively.  

 
Algorithm1HighlevelalgorithmofFH-join 

 

1: 

constructrangefilterbasedonhistogramsofRandSrelations(Se

esection5.1formoredetails) 

2:usehistogramsofRandStoselectrangesforrangefilter 

3:whilemore tuples in R need to be processeddo 

4:     Fillinput bufferwithtuplesofRloadedfromdisk 

5:foreach tuple rs of R inside the input buffer do 
6:            if the bloomfilter of Sdetermines thatthe 

valueofrdoesnotexistinSthen 

7:             discardr 

8:          elseifrangefilterjudgerisinselectedrangethen 

9:          insertr intoanin-memoryhashtable 

10: else 

11:           writer intooutputbufferofhashbucket ofR 

12:             ifoutputbufferbecomesfullthen 

13:                      write 

outpu tbuffer toco rrespond ingdisk -basedhashbucket 

14:                end if 
15:           end if 

16:      endfor 

17: endwhile 

18: while more tuples in S need to be processed do 

19:     FillinputbufferwithtuplesofSloadedfromdisk 

20:      for eachtuplesofSinsidetheinputbufferdo 

21:            ifthe bloom filterof Rdetermines that thevalue 

ofSdoesnotexistinRthen 

22:                discards 

23:       elseif ranges filterjudgesisinselectedrangethen 

24:             join s with Rtuples in the in-memory hash table 

25:          else 
26:              writesintooutputbufferofhashbucketofs 

27:             ifoutputbufferbecomesfullthen 

28:                      write 

outpu tbuffer toco rrespond ingdisk -basedhashbucket 

29:                end if 

30:           end if 

31:      endfor 

32: endwhile 

 

FH-join only changes the partition phase of the 

hash join. Therefore the join phase is the same as 

GRACE and hybrid hash joins. Hence we focus our 

discussion in this section on the partitioning phase of 

the FH-join.  

A. Range filter 
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The aim of the range filter is to make the best use 

of RAM by selecting the attribute ranges that cover 

the largest number of S tuples whilst making sure 

the R tuples that map into the selected ranges fit 

within a memory limit LRF. Given this aim it is best 

to select ranges where R is sparsely populated and S 
is densely populated. Figure 3 shows an example 

comparing two different attribute ranges, range A 

and rangeB. Each dot in the top row represents an R 

tuple and each dot in the bottom row represents an S 

tuple. In the example it is better to select rangeA 

than rangeB because rangeA filters out 12 S tuples 

whereas rangeB filters only 2 S tuples and both 

ranges consume the same amount of RAM space 

because they both contain the same number of R 

tuples. One reason for the success of rangeA is that 

it is sparsely populated in terms of R tuples, thereby 

allowing it to stretch over a longer interval of join 
attribute values. Therefore when selecting attribute 

ranges we need to consider the distribution of both R 

and S join attribute values. 

We use histograms to capture the frequency 

distribution of join attribute values for both R and S. 

Any type of histogramcan be used. We will consider 

two popular histogram types: equi-width and equi-

depth. 

 

 
Fig.3 comparing two example ranges. 

 

B. Equi-width Histogram 
The length of the value range of an equi-width 

histogram is the same for all of its buckets. When 

using the equi-width histogram, we assign the same 

histogram bucket boundaries for all relations that 

may join with each other. We then select a subset of 

the histogram buckets that fits within LRF (R tuples 

of selected buckets fit within LRF), which also 
filters out the most number of S tuples.  

No missing values and no duplicate values in R. If 

there is one tuple for each distinct value in R then 

finding the optimal set of histogram buckets is trivial 

since it just involves selecting the histogram buckets 

with the largest number of S tuples which also fits in 

LRF. This is because in this case each histogram 

bucket holds the same number of tuples. This trivial 

situation is quite common since the join attribute on 

R is often the primary key which often does not have 

anymissing or duplicate values. 

R contains missing values and/or duplicate values. 

If there are missing and/or duplicate values in the 

joinattribute values of R then the problem becomes 

the NPcomplete knapsack problem. In the knapsack 

problem weare given a set of items I numbered 1 to 

n. Each item i ∈ Ihas an integer size, si and has a 

value of vi. The aim is tofind the subset T ⊆ I, such 

that  Si ≤𝑖∈𝑇 Land Vi𝑖∈𝑇  viis maximized, where L 
is a limit on the total size of itemsthat can fit within 

the knapsack. Mapping the knapsackproblem to our 

problem is trivial. The items map into thehistogram 

buckets, the size of each item maps to the numberof 

R tuples within the histogram bucket. This is 

becausethe R tuples are the ones that we are put into 
the RAM andthe RAM corresponds to the knapsack. 

The value of anitem maps into the number of S 

tuples within the histogrambucket. This is because 

we want to maximize the number ofS in the selected 

ranges (selected histogram buckets). Thesize limit L 

maps into our RAM limit LRF. 

Having established that finding the optimal set of 

histograms is NP complete in the case of missing 

and/or duplicate join attribute values for R, we turn 

to the well-known greedy heuristic for solving the 

knapsack problem. In the greedy solution we first 

sort all the histogram buckets in terms of the profit 
(|SBi |/|RBi | ratio), where |SBi | and |RBi | are the 

number of tuples of S and R that map into bucket Bi, 

respectively. Then we try to fit as many buckets of R 

tuples as possible into RAM in descending order of 

profit. Algorithm 2 shows the pseudo code for the 

algorithm. 

 

Algorithm 2 Greedy algorithms for selecting R join 

attribute ranges for the range filter when the equi-

width histogram is used. 

 

Input: ewHistR: equi-width histogram of relation 

R, ewHistS: equi-width histogram of relation S, 

LRF: 

RAM limit for storing R tuples of selected 

ranges 

Output: selected Ranges: selected ranges of R 

1: Initialize selected Ranges to empty fjSBi j and 

jRBi j are the number of tuples of S and R that 

map into bucket Biof ewHistR and ewHistS, 

respectively 

2: Sort histogram buckets of ewHistR in terms of 

profit (jSBi j=jRBi j ratio) and place in sorted bucket 

Array 

3: for each bucket b within sorted bucket Array 

in descending order profit do 

4: if (total size of tuples within selected Ranges + 

total size of R tuples in b) < LRF then 

5: Place value range of b into selected Ranges 

6: end if 

7:end for 
 

 

C. Equi-depth Histogram 
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The equi-depth histogram has variable bucket 

boundaries but fixed histogram height (the number 

of items that map into the same bucket). Therefore 

each bucket contains the same number of items. One 

of the major benefits of the equi-depth histogram is 

that it is much more sensitive to the value 
distribution. Therefore there will be more buckets in 

value ranges that have higher number of tuples.  

Like for the equi-width histogram case here we 

also aim to select the subset of histogram buckets 

that fits within LRF, and filters out the most number 

of S tuples. We again first consider the case of no 

missing or duplicate R join attribute values.  

No missing values and no duplicate values in R. 

In the case of no missing and/or duplicate R join 

attribute values the solution is trivial. We just select 

the set of S histogram buckets which have the 

smallest width and which also fit within LRF. This is 
because each bucket has the same number of S 

tuples but the smaller width buckets covers a smaller 

number of R tuples. Therefore if we select the 

smaller width buckets we can fit more buckets 

within LRF.  

R contains missing values not due to prior 

selection and/or contains duplication. This case is 

less trivial, since the equi-depth histogram buckets 

of R and S would not be aligned and therefore we 

need to interpolate the number of tuples in one of the 

histogram buckets in order to effectively align the 
buckets. We cannot select a subset of S histogram 

buckets like the previous two cases because we 

would then need to interpolate the R histogram 

buckets to approximate the number of R tuples that 

would fall into the selected S tuples. This 

approximation would mean we cannot guarantee to 

stay within the memory limit of LRF. Hence we 

select a subset of the R histogram buckets such that 

selected buckets stay within the memory limit and 

the interpolated number of tuples in the 

corresponding S histogram buckets is the largest. 

The reason this is not an NP complete problem like 
the corresponding equi-width histogram case is that 

all the R buckets have the same number of tuples. 

Therefore it is not the Knapsack problems because it 

effectively means each item has the same weight. 

For a given join attribute value range v we can 

compute the number of tuples in the corresponding 

range of S by interpolating the values of the S 

histogram buckets, NTS (v) as follows: 

 

𝑁𝑇𝑠 𝑣 =   
𝑂𝑉𝐸𝑅𝐿𝐴𝑃  𝐿𝑒𝑛𝑔𝑡 𝑕 𝑏,𝑣 

𝑙𝑒𝑛𝑔𝑡 𝑕 𝑏 
 𝑁𝑇(𝑏)

𝑏∈𝑂𝑉𝐸𝑅𝐿𝐴𝑃𝐵𝑠 (𝑣)
(2) 

 

Where OVERLAPBS (v) is the set of S 

histogrambuckets that overlap v, OVERLAP Length 

(b; v) is thelength of the overlap between the value 

range of bucket band v, length (b) is the length of 

value range of bucket b,and NT(b) is the number of 

tuples in bucket b.Using Equation 2 we can compute 

the number of tuples ofS that fall within the value 

range of a R histogram bucket. 

 

D. Equi-width versus equi-depth histograms 
In this section we compare the equi-width and equi-

depth histograms in terms of update cost, quality of 

selected ranges and run-time complexity.Where 

quality of a selected range is measured in terms of a 

higher fraction of R and S tuples filtered out per byte 

of workspace WS (Equation 1). 

Update costs. The main benefit of using an equi-

width histogram is that updating the histogram is 

trivial and cheap. This is because its bucket 
boundaries do not change with respect to updates. 

Inserting a tuple simply requires incrementing the 

corresponding bucket count and deleting a tuple 

simply requires decrementing the corresponding 

bucket count. However, incrementally updating an 

equi-depth histogram is very difficult since updates 

result in changes to multiple bucket boundaries. This 

may not be a big problem for applications that are 

mostly read-only such as data warehouses.  

Quality of selected ranges. For the case that R 

contains no missing values and no duplicated values 
the equi-depth histogram will provide higher quality 

selected ranges because it is much more sensitive to 

skew in the number of tuples in both R and S. As 

mentioned before the equi-depth histogram would 

have more histogram buckets in ranges that have 

higher number of tuples. For the case that R contain 

no duplicate values but contain missing values due 

to prior selection, again the equi-depth histogram 

will produce higher quality selected ranges. This is 

for the same reason as the first case. However, for 

the last case where R contains missing values not 
due to prior selection and/or contains duplication, it 

is less clear the equi-depth histogram is better than 

the equi-width histogram. The reason for this is the 

selection of value ranges is based on the bucket 

boundaries of R instead of bucket ranges of S. 

Therefore we cannot take advantage of finer grained 

ranges in regions that have more S values. Selecting 

based on the attribute boundaries of S is more 

important than R since S is the inner relation and 

therefore should be larger in size. The other thing to 

consider for this third case is that both equi-width 

and equi-depth histogram solutions are approximate 
solutions. For the equi-width histogram it is a greedy 

heuristic solution to the knapsack problem and 

forthe equi-depth histogram interpolation is used to 

approximate the number of tuples S tuples within 

each range of R. 

Run-timecomplexity.All the proposed algorithms 

for both types of histograms have run-time 

complexity of O(nlog(n)), where n is the number of 

histogram buckets in either R or S depending on the 

algorithm. This is because they all involve first 

sorting the ranges corresponding to R or S histogram 
buckets and then selecting the subset of ranges based 

on sorted order. Although when the equi-width 

(2) 
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histogram is used for the case that R contain missing 

values and/or duplicate values is an NP complete 

problem, we proposed the use of the greedy algo-

rithm which again has a run-time complexity of 

O(nlog(n)). 

Recommendation. Based on the 
aboveanalysiswemakethefollowingrecommendations

.Use the equi-width histogram whenever the data is 

expected to be updated fairly frequently due to the 

high cost of updating equi-depth histograms. 

However, if the data is mostly read-only then the 

equi-depth histogram should be used except the third 

case where R contains missing values not due to 

prior selection and/or contains duplication. In this 

third case there is no clear winner between equi-

width and equi-depth histograms. These 

recommendations are summarized in Table 1. 

TABLE I 

Recommendations on when the equi-width versus equi-depth 

histogram should be used 

 

 

E. BLOOM FILTER  

If we know which join attribute values do not 

exist for the opposing relation then we can directly 

discard any tuples that map to a join attribute value 

that does not exist in the opposing relation. One 

naive way to store which join attribute values exist 

within a relation is to use 1 bit per join attribute 

value. However, this approach would consume a lot 

of RAM space since the join attribute values may 

span a large domain. In this paper we use a bloom 

filter [4] as effectively a lossy compression method 

to store and index which join attribute values that 
exist within a relation. The bloom filter can be set to 

any size and has the desirable property that it will 

never produce any false negatives. That is if a join 

attribute value is found to not exist in the bloom 

filter then it is guaranteed to not exist in the relation. 

However, a false positive is possible, that is, a join 

attribute value that exists within the bloom filter may 

not actually exist in the relation. False positives do 

not result in missing join results but just means that 

the false positive tuple cannot be filtered out by the 

bloom filter.  
The bloom filter works by first hashing the join 

attribute values of one relation and then using the 

hash value as an index into a bit array. Next, the cell 

within the bit array that corresponds to the hash code 

is set to 1 indicating the existence of at least one 

tuple whose join attribute value hashes to that 

location. The filter can then be probed by hashing 

join attribute values of the opposing relation and 

then using the hash value to index into the 

corresponding cell of the bit array. If the indexed 

cell is zero then it means there is no tuple with that 

join attribute value in the opposing relation. Hence 
the tuple can be safely filtered out.  

 

Figure 4 shows an example of using the bloom 

filter to store the existence of S tuples. In the 

example the set of S join attribute values 20, 4, 22, 1, 

18 are inserted into the bit array of the bloom filter 

by using their corresponding hash values 1, 2, 4, 9 
and 4. The bit array positions 1, 2, 4 and 9 are set to 

1 accordingly. Next the R join attribute value 5 is 

used to probe the bloom filter by computing the hash 

value of 5, which is 8 in this case. The eighth 

position in the bit array is inspected. A bit value of 0 

is found at that location, indicating the join attribute 

value of 5 does not exist in R. Therefore the tuple of 

R with join attribute value of 5 can be safely filtered 

out. In contrast the join attribute value of 66 when 

used to probe the bit array results in a false positive 

since the hash value of 66 is 9 which maps into a 

location of the bit array which has 1 a bit set. This is 
a false positive since the set of S values does not 

contain 66. The 9th element of the bit array was set 

to 1 since the value 1 also has a hash value of 9.  

 

 
Fig 4. Example of the use of the bloom filter 

 
Reducing false positives. As mentioned earlier 

false positives does not produce incorrect join results 

since it just means the bloom filter cannot filter out 

the false positive tuples. However, false positives are 

undesirable since they reduce the number of tuples 

of S that can be filtered out during the partitioning 

phase. There are two approaches for reducing the 

frequency of false positives. First, the bit array can 

be enlarged. This results in less hash collisions. The 

second approach is to use multiple hash functions. In 

the case multiple hash functions are used, a false 
positive only occurs when a value results in a hash 

collision for all hash functions used. The first 

Missingand/orduplicate 

valuesinR 

Mostlyread

-only 

Equi-

width 

Equi-

depth 
Nomissingandnoduplicate Yes   √ 
Nomissingandnoduplicate No  √  
Onlymissingduetopriorselection Yes  √  
Onlymissingduetopriorselection No √   

Missingnotduetopriorselectionand/o

rduplicate 

Yes √  √  
Missingnotduetopriorselectionand/o

rduplicate 

No √   
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approach of enlarging the bit array reduces false 

positives by using more RAM space, whereas the 

second approach of using multiple hash functions 

reduces false positives by using more computation.  

Selection prior to join. In the situation there is a 
selection prior to a join; a bloom filter can be built 

on-the-fly for the selected tuples during the selection 

operation. 

 
F. Keeping bloom filters up-to-date 

When tuples are deleted we cannot simply reset its 
corresponding entry in the bit array to 0 since 

multiple values can hash to the same location in the 

bit array. However, doing nothing when a tuple is 

deleted does not produce an incorrect join result 

since it just generates a false positive. Therefore we 

do not update the bloom filter when tuples are 

deleted, but instead rebuild the entire bloom filter 

after a threshold number of tuples have been deleted. 

Insertion into the bloom filter is cheap and straight 

forward as described throughout this section. It is 

also important to note that there are a lot of 

applications which are mostly append only like most 
datawarehouses. For these applications keeping the 

bloom filter up-to-date will not be a problem since 

no deletions are needed.  

VI. EXPERIMENTAL SETUP 

The experiments were conducted using a 500GB 
Seagate ST3500418AS 3.5 inch SATA Hard Drive. 

The processor we employed in the experiments is an 

Intel(R) Core(TM) i7 CPU 860. The machine had 4 

GB of RAM. However, we further restricted the 

amount of RAM available to the tested algorithms. 

The experiments were conducted on the Linux 

operating system. Linux automatically caches all IO 

requests. This would invalidate our experiment 

results since it would mean pages loaded during the 

partitioning phase will be available for reuse in the 

join phase without the need to reload from the hard 
disk. Therefore, we disabled the operating system’s 

caching functionality.  

 

A. Algorithms tested 

HH-Join. This is the traditional hybrid hash join. 

We set the size of the input buffer, output buffer, 
working space and the number of disk resident hash 

buckets using the formulas developed by Hass et al. 

[20] (as explained in Section 4). The universal fudge 

factor was set to the recommended 1.2.  

FH-join. For the FH-join, we set the size of the 

input and all the output buffers to 700 pages (2.8 

MB) each and the number of disk resident hash 

buckets to 50. These parameters were determined 
based on experimental tuning. We leave the work of 

finding optimal allocation of buffer sizes for FH-join 

as an area of future work. We set the size of the 

bloom filter to 164 KB. We set the memory limit for 

the range filterLRF to equal the size of the work 

space minus the size of bloom filter. In the 

experiments we used an equal-depth histogram.  

 
B. Data sets 

In our experiments the size of the tuples of R and 

S relations were modelled using the ORDERS and 

LINEITEMS tables of the TPC-H benchmark. We 

also modelled the join attribute as a 32-bit integer 
representing the ORDERKEY. We varied the ratio 

of R relation size versus S relation size instead of 

just using the one defined by TPC-H. This is because 

our algorithms are highly sensitive to this ratio and it 

is important to test a range of ratios. We also did not 

use the exact data distribution specified by the TPC-

H benchmark since we wanted to test a range of join 

attribute value distributions.  

We generated three data sets. The three data sets 

are described as follows. Complete-uniform, where 

the join attribute of R have no missing values and no 

duplicates. The join attribute values of S are 
generated using the uniform random distribution. 

Complete-Gaussian, where the join attribute of R 

have no missing values and no duplicates. The join 

attribute values of S are generated using the 

Gaussian random distribution. We use complete-

Gaussian as the default data distribution because this 

is a common scenario. In this common scenario the 

join attribute of R is a primary key and the join 

attribute of S is a foreign key. The primary key 

cannot have any duplicate values and often has the 

complete set of values. The join attribute of the 
foreign key can often be skewed. Gaussian-Gaussian, 

where both the join attributes of both R and S 

datasets are generated using the Gaussian random 

distribution. Table 2 shows the default settings used 

in our experiments.  

TABLE III 

Default parameter setting used in our experiments 

 

VII. EXPERIMENTAL RESULTS 

We have conducted six experiments. In the first 

experiment, we have varied the RAM size. In the 

second experiment, we have varied the percentage of 

values missing from R. In the third experiment, we 

have varied the level of skew in S. In the fourth 

experiment, we varied the size of S. In the fifth 

experiment, we reported the breakdown of execution 

  Defaultsetting 
RAMsize(pages)  80000 

PercentageofRvaluesmissing  0 
σofGaussiandistribution  0.5 
SizeofSrelation(pages)  2857369 
SizeofRrelation(pages)  245964 

TuplesizeofS(bytes)  112 
TuplesizeofR(bytes)  104 
Datadistribution  Complete-Gaussian 
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time for three different RAM sizes. Finally, we 

varied the data distribution of both R and S.  

 

A. Vary RAM size results 

In this experiment, we compare the performance 

of the FH-join and HH-join with varying RAM sizes 
and the rest of the parameters set using the default 

parameters.  

Figure 5(a) shows the total execution time result 

when the RAM size is varied. Figure 5(b) and Figure 

5(c) shows the read and write IO results, 

respectively. Figure 5(d) shows the percentage of S 

tuples filtered out during the partition phase of the 

two competing hash join algorithms. 
Figure 5(a) shows that the FH-join algorithm 

significantly outperforms the HH-join algorithm for 

total execution time and the percentage difference 

between the algorithms increase as the RAM size 
increases. This is because the FH-join algorithm 

makes more effective use of RAM by analysing the 

skewed distribution of S and then retaining the 

ranges of R which filters out the highest percentage 

of S tuples. This can be seen from Figure 5(d). The 

main effect of filtering out more tuples is the 

dramatically smaller number of write IOs of the FH-

join compared to the HH-join as shown on Figure 

5(c).  

 

 
(a) Total execution time 

 

 
(b) Number of read IO 

 

 
(c) Number of Write IO 

 

 

 

 
(d) Filtered Percentage 

Fig 5. Results of the varying RAM size experiment. 

 

B. Vary percentage of missing R values  

In this experiment we compare the performance of 

FH-join and HH-join when the percentage of R 

tuples missing is varied. We randomly (using 
uniform random distribution) remove between 0% 

and 50% of the values of relation R. We left the 

other parameters the same as the default settings.  

Figure 6(a) shows the total execution time 

performance of the FH-join compared to the HH-

join. The results indicate that the FH-join 

outperforms HH-join for the whole range of 

percentage of missing R tuples varied. In particular 

FH-join outperforms HH-Join by a factor of 3 for 

total execution time and a factor of 5 for write IO 

when 50% of the R tuples are missing.  
It can be clearly seen from the graph that the FH-

join outperforms the HH-join by a larger margin as 

the percentage of R tuples missing increases. This is 

because the FH-join uses a bloom filter to filter out 

tuples of S which map to the missing R values, 

whereas the HH-join does not keep track of which R 

values are missing and therefore cannotfilter out the 

corresponding S tuples. Figure 6(d) clearly shows 

the effectiveness of the bloom filter at filtering out S 

tuples, when the percentage of R tuples removed is 

50% the two filters of the FH-join combine to 

remove 80% of the tuples of S. In contrast the 
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percentage of tuples filtered out by the hybrid hash 

join stays constant since it does not know which R 

tuples are missing. 

 

 
(a) Total execution time 

 

 
(b) Number of read IO 

 

 
(c) Number of Write IO 

 

 
(d) Filtered Percentage 

 

Fig 6. Results of percentage of missing R tuples 

 
 

 

C. Vary degree of skew in S 

In this section, we compare the performance of 

the two algorithms when the skew in the values of S 
is varied by varying the sigma value of the Gaussian 

distribution from 0.1 to 1.0. A larger sigma value 

means smaller skew. Therefore the graphs show the 

results from higher skew to lower skew.  

Figure 7 shows, that the FH-join outperforms HH-

join algorithm on both the total execution time and 

the total IO cost in all tested scenarios by up a factor 

of 4 for total execution time and by up to an order of 

magnitude for write IO when the data is highly 

skewed (sigma equal to 0.1). This is because the 

range filter of FH-join is more effective (prunes a 
larger percentage of S tuples) when the data 

distribution of S is more skewed.  

The results show FH-join gets closer to the 

performance of the HH-join as the degree of skew 

reduces. This is because as the degree of skew 

decreases FH-join loses more of its advantage of 

exploiting skew to filter out more S tuples. Hence it 

performs more similar to HH-join as the degree of 

skew decreases. This is supported by the results of 

Figure 7(d) which shows the percentage of tuples 

filtered out by the FH-join is about the same as HH-

join when sigma is at 1.0 (lowest skew).  
The results show that although FH-join filters out 

around the same percentage of tuples at sigma of 1.0 

(shown in Figure 7(d)) as the HH-join FH-join 

however outperforms HH-join for total time by a 

noticeable margin (Figure 7(a)). This is because our 

FH-join implementation makes very efficient use of 

the CPU when matching tuples in the partitioning 

phase by using knowledge that the R relation does 

not have any missing values and it is ordered in 

RAM.  

 

 
(a) Total execution time 



International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018 

 

ISSN: 2231-2803                                  http://www.ijcttjournal.org                                 Page 17 

 
(b) Number of read IO 

 

 
(c) Number of write IO 

 

 
(d) Filtered Percentage 

 

Fig 7. Results of varying skew in S. 

 

D. Vary size of S 

In this experiment, we compare the performance 

of the FH-join and the HH-join with varying sizes of 

S. The size of relation S is labelled in terms of the 
number of factors by which the S relation is larger 

than the R relation. We left other parameters to 

default settings.  

The results in Figure 8 show that the FH-join 

outperforms HH-join by a larger amount as the size 

of relation S grows. The reason is again due to the 

fact that the FH-join uses RAM more efficiently 

during the partitioning phase. Each good decision of 

which ranges of relation R to keep in RAM is 

magnified as the size of S grows, hence increasing 

the gap between the two algorithms as the size of S 

grows.  

 
(a) Total execution time 

 

 
(b) Number of read IO 

 

 
(c) Number of write IO 

 

 
(d) Filtered Percentage 

Fig 8. Results of varying the size of S. 
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E. Breakdown of total execution time as RAM size 

is varied. 

In this section we measure the execution time of 

the two join algorithms by breaking down the total 

execution time into two categories. Firstly, the 

execution time is divided into two parts, the 
partitioning phase, and the join phase. Secondly, the 

execution time is divided into three parts, the write 

IO time, the read IO time, and the CPU time. For 

each breakdown graph we report the results for three 

different RAM sizes.  

The partitioning and join phase breakdown results 

are reported in Figure 9(a). As can be seen from the 

graph the partitioning phase consumes a much 

higher percentage of the total time compared to the 

join phase. This is because both algorithms are able 

to complete the join of a high percentage of tuples 

during the partition phase and therefore leaving few 
tuples left to join during the join phase. Also the 

non-filtered out tuples are written out during the 

partition phase which contributes to a significant 

amount of execution time during the partitioning 

phase (see Figure 9(b)).  

The results of the breakdown between read IO 

time, write IO time and CPU time for the 

partitioning phase is shown in Figure 9(b). The 

results show as the RAM size grows both algorithms 

spend less time performing write IO. This is because 

as the RAM size grows a larger amount of relation R 
can be fit in memory for both algorithms and can 

therefore be used to filter out a larger amount of S 

tuples which in turn reduces the need to write out 

tuples for the join phase. The results of the 

breakdown between read IO time and CPU time for 

the join phase is shown in Figure 9(c). We do not 

report write IO times for the join phase since the join 

phase does not need to perform any write IO. The 

results show CPU time is a larger portion of total 

execution time than read IO time for the join phase. 

The reason for this is the join phase is CPU intensive 

due to the large number of comparisons it needs to 
perform and also the large number of random RAM 

accesses during hash table creation and probing. 

 

 
(a) Total  execution  time 

 
(b) Partition phase 

 

 
(c) Join phase 

Fig 9. Results of breakdown of total execution time as RAM 

size is varied 

 

F．Vary data distributions of R and S 

So far, in previous experiments, we used the 

Complete-Gaussian data distribution data set. In this 

section, we report results for data distributions of 

Complete-Uniform, Complete-Gaussian and 

Gaussian-Gaussian (see Figure 6.2 for a description). 
The other parameters were left at their default values.  

 

Figure 10 shows the results for this experiment. 

As shown in the results, the FH-join outperforms the 

HH-join for all of the three vary distribution dataset 

groups for total execution time. Among these three 

tested data distribution groups, FH-join gives the 

best performance in Complete-Gaussian distribution. 

This is because FH-join can take advantage of the 

skew in the S relation to filter out more tuples during 

the partitioning phase. In addition it also uses the 

knowledge that R has no missing tuples and is 
ordered in terms of join attribute values to join 

tuples faster during the join phase.  
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(a) Total execution time 

 

 
(b) Number of read IO 

 

 
(c) Number of write IO 

 

 
(d) Filtered percentage 

Fig 10. Results of varying data distribution of R 

and S 

 

 

 

 

VIII. CONCLUSION 

 

In this paper, we proposed a new approach for 

speeding up the partitioning phase of the external 

hash join algorithm, by reducing the total read and 

write IO costs. The approach is designed to make the 

best use of the limited RAM space available during 

the partitioning phase to filter out as many tuples 

both relations as possible from entering the join 

phase. The approach is called FH-join. The FH-join 

uses a range filter and a bloom filter to prune the 

number of tuples entering the join phase.  

A detailed experimental study was conducted into 
the effectiveness of the FH-join against the hybrid 

hash join algorithm. The results show that the FH-

join algorithm outperforms the hybrid hash join 

algorithm in terms of both total execution time and 

total IO cost in almost all scenarios tested. The FH-

join algorithm outperforms the hybrid hash join by a 

larger margin as any one of the following happens: 

RAM size increases; degree of skew in the attribute 

value of the outer relation increases; the percentage 

ofmissing values increases;and as the size of the 

inner relation increases. The results also showed that 
the FH-join gets most of its performance advantage 

against hybrid hash join from reducing write IO 

during the partitioning phase of the join.  

In the future, we plan to propose more effective 

methods for selecting the best ranges during the 

partitioning phase and further optimize the CPU 

performance of the FH-join algorithm. We also plan 

to explore the performance implications of using the 

FH-join in a multi-threaded environment.  
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