
 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 1– Mar 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 4

Enhancing Dictionary Based Preprocessing
for Better Text Compression
R. R. Baruah1, V.Deka1, M. P. Bhuyan2

1(Department of Information Technology, Gauhati University, India)
2(Department of Computer Science and Engineering, Assam Engineering College, India)

 ABSTRACT: With the rapid growing of

data and number of applications, there is a crucial
need of dictionary based reversible transformation
techniques to increase the efficiency of the
compression algorithms and hence contribute
towards the enhancement in compression ratio.
Performance analysis of compression methods in
combination with the various transformation
techniques is obtained for different text files of
varying sizes. The popular block sorting lossless
Burrows Wheeler Compression Algorithm
(BWCA) is implemented along with one proposed
method. For efficient compression a dictionary
based transformation algorithm is also developed.
It is observed that much increase in terms of
compression ratio is attained when a source file is
preprocessed with dictionary and then applied to
BWCA and the proposed method.

Keywords - BWCA, Dictionary, Preprocessing

Techniques, Lossless, Reversible

1. INTRODUCTION

It is seen that there has been an unparalleled
expansion of textual information through the use of
Internet, representing text, images, video, sound,
computer programs, etc. This has led to the
increasing demand of the need of data
compression. In computer science and information
theory, data compression involves encoding
 information using fewer bits than the original
representation. It is the ability of reducing the
amount of storage or Internet bandwidth required to
handle this data. The most vital objective of any
compression algorithm is the compression
efficiency. The more redundancy the source data
has, the more effective a compression algorithm
may be.

Compression can be either lossy or lossless. A

lossless technique means that the restored data file
is identical to the original. This is absolutely
necessary for many types of data. For example:
word processing files, tabulated numbers etc. Here
we cannot afford to misplace even a single bit of
this type of information. In comparison, data files

that represent images and other acquired signals do
not have to be kept in perfect condition for storage
or transmission. If the changes made to these
signals resemble a small amount of additional
noise, no harm is done. Compression techniques
that allows this type of degradation are called lossy.
The distinction is important because lossy
techniques are much more effective at compression
than lossless methods.

The text compression techniques have

captured the attention more in the recent past as
there has been a substantial expansion in the usage
of internet, digital storage information system,
transmission of text files, and embedded system
usage. Research is going on for text compression
continuously to improve its methods and
compressing technologies. Accordingly researchers
from various parts of the world have developed
compression algorithms, such as Huffman
encoding, arithmetic encoding, the Lempel-Ziv
family, Run length encoding based algorithms.

An alternative approach can be to develop

reversible transformations that can be applied to a
source text before applying any existing
compression algorithms. This technique will help
the back end’s algorithms to compress the original
text more easily which will lead to the
improvement in compression ratio. These methods
are advantageous in the sense that they make
redundancy more visible to the compressor and are
performed prior to actual compression.

The vital feature of merit for data compression

is the "compression ratio", which is the ratio of the
 original size – compressed size divided by
original uncompressed file. Thus there are two
main approach to attain better compression ratio:

a) To develop different compression algorithm.
b) To develop reversible transformation that

can be applied to a source text which improves the
existing algorithms ability to compress. Thus
preprocessing techniques came into being.

It is an important thing to note that the

transformation must be exactly reversible so that

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 1– Mar 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 5

the overall lossless compression paradigm is not
affected. Furthermore the existing data
compression and decompression algorithms are
unaltered, so that they do not exploit information
about the transformation while compressing. Our
main objective is to improve the overall
compression ratio of the original source text in
comparison with what could have been achieved by
using only the existing compression algorithm.

2. Burrows Wheeler Compression

Algorithm

Within the last decade, the Burrows-
Wheeler Compression Algorithm has become one
of the key players in the field of universal data
compression. The reasons for its success are high
compression and decompression speed combined
with good compression rates. BWCA is a block
sorting lossless data compression algorithm which
takes a block as an input. BWCA comprises of 4
stages which include Burrows Wheeler Transform
(BWT),Global Structure Transformation (GST),
Run Length Encoding (RLE) and Entropy Coder.

2.1 Burrows Wheeler Transform (BWT):

The fundamental concept behind this
technique is that when a text file or a character
string is transformed, the size of the string does not
change[9]. The transformation only permutes the
string into n permutations, when n is the total
number of characters in the string. After
performing Burrows Wheeler Transform, new
transformed string can be compressed easily with
compression method like run length encoding.

2.2 Global Structure Transformation(GST):

This is the second stage of the BWCA, for
which MTF (Move To Front) is used. It is the most
common post BWT processing algorithm which
transforms the input symbol sequence into an index
sequence. For each input symbol, an output index
is written. The main idea is that each symbol in the
data is replaced by its index in the stack of
“recently used symbols”. For example, long
sequences of identical symbols are replaced by as
many zeroes, whereas when a symbol that has not
been used in a long time appears, it is replaced with
a large number. Thus at the end the data is
transformed into a sequence of integers; if the data

exhibits a lot of local correlations, then these
integers tend to be small.

2.3 Run length Encoding(RLE):

Run length encoding (RLE) is a
compression algorithm which is applied when a
given file contains too many redundant data or long
run of similar characters. Run-length encoding
performs lossless data compression and is well
suited to palette-based bitmapped images such
as computer icons. It does not work well at all on
continuous-tone images such as photographs,
although JPEG uses it quite effectively on the
coefficients that remain after transforming
and quantizing image blocks. Run-length encoding
is used in fax machines (combined with other
techniques into Modified Huffman coding). It is
relatively efficient because most faxed documents
are mostly white space, with occasional
interruptions of black.

2.4 Huffman Coding:

Huffman coding is a data compression

technique in which each input character is replaced
with variable length binary digits which are called
codeword and the codeword has been derived in a
particular way based on the probability of
occurrence of each symbol or character. The most
frequent symbols in the source have the shortest
length code and the least frequent symbol has the
longest code. This technique is implemented by
creating a binary tree of nodes. This can be stored
in data structures like array or link list, the size of
which depends on the number of symbols, n.

3. Dictionary Based Transformations:

The famous dictionary based preprocessing

methods are Star Transform, Length Index
Preserving Transformation (LIPT), StarNT,
Intelligent Dictionary Based Encoding (IDBE) and
Word Replacement Transformation (WRT). In all
of them dictionary is prepared in advance and is
shared by both encoder and decoder.

3.1 Star Transform

The star encoding is a reversible lossless

preprocessing technique introduced by Kruse and
Mukherjee [5]. The aim is to transform the text into
some intermediate form which can be compressed

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 1– Mar 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 6

easily by the existing data compression algorithms.
The star encoding (or *-encoding) is intended to
exploit the natural redundancy of the language [3].
Every word in the dictionary has a star encoded
equivalent in which as many letters as possible are
replaced by the “*” character.The main aim for the
Star Transform is to define unique signature for
each word replacing the letters of the word by a
special character (*) and to use a minimum number
of characters in order to identify precisely the
specified word. If the word in the input text is not
in the dictionary it will be passed to the backend
algorithm unaltered. Hence if this transformation
technique can be carried out in a proper manner,
then in the resulting text we can have a more
number of *characters which implies that it can be
more easily compressible by the existing backend
compression algorithm. Special provisions are also
made in this transformation technique for handling
capitalization, punctuation marks and special
characters.

3.2 Length Index Preserving Transform

LIPT,proposed by Fauzia S. Awan and Amar
Mukherjee uses not only the letters of the alphabet
to denote length of the words but also to denote the
offset within a block of words in the English
dictionary having the same length. On creating this
transformation technique, the length and the
frequency of words are of utmost importance [11].
Some modifications were made to the Star
transform for increasing the speed performance of
the LIPT technique. In Star encoding, searching of
a certain word in the encoding phase and well as in
the decoding phase leads to increase in the
execution time. A better solution to this problem
can be attained by initially sorting in lexicographic
order of the words from the dictionary and then in
the encoding and decoding phase we will apply
binary search in the sorted dictionary. While
encoding, the symbol * denotes the beginning of
the codeword, followed by the alphabets (a-z,A-Z)
representing the length of the word and then the
maximum of three letter codewords are places.

3.3 StarNT Transform

Star New Transform (StarNT), a fast transform

algorithm was proposed by Weifeng Sun, Nan
Zhang and Amar Mukherjee. This method is
superior to LIPT not only in compression
performance, but also in time complexity [10]. To

gain a much better compression performance for
the backend data compression algorithm, only
letters [a..z, A..Z] are used to represent the
codeword [12]. The first 26 words are assigned “a”,
“b”, …,“z” as their codewords. The next 26 words
are assigned “A”, “B”, ….. “Z”. The 53rd word is
assigned “aa”, 54th “ab”. Following this order,
“ZZ” is assigned to the 2756th word in the
Dictionary. The 2757th word is assigned “aaa”, the
following 2758th word is assigned “aab”, and so
on. In this transformation, the character “*” means
that the following word does not exist in the
transform dictionary D. The key reason for this
change from the earlier Star family is to reduce the
size of the transformed intermediate file and thus
the encoding/decoding time of the backend
compression algorithm can be minimized. The
initial letter capitalized words and all-letter
capitalized words are handled by some specialized
operations.

3.4 IDBE Transformation:

The intelligent dictionary based encoding

method was drawn by V.K. Govindan and B.S.
Shajee Mohan [12]. In this transformation
technique, the dictionary is produced with multiple
sources of files as input. Here the codewords are
formed using the ASCII characters 33 to 250. For
first 218 words, the ASCII characters 33 to 250 as
the code. The remaining words take each one
permutation of two of the ASCII characters (in the
range 33-250), in order. If there are many words
left over, it can take every one permutation of three
of the ASCII characters and finally if required
permutation of four characters and so on. This
method not only provide high compression ratio
but also better security from attacks while
transmission.

3.5 Word Replacement Transformation:

Word Replacement Transformation [13] is the
most recent algorithm from the presented family.
Grabowski uses only ASCII characters [128 to 255]
to represent the codeword and also a promising
technique invented by Taylor, trying to reduce the
effect caused by end-of-line (EOL) symbols, which
hamper the context, since words are usually
separated by spaces. WRT gives the overall high
compression ratio compared with all other
preprocessing techniques using PAQ6 as the

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 1– Mar 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 7

backend algorithm. WRT works based on the
hashing techniques which speeds up the encoding
and decoding process. The only drawback of
hashing is that of the need of high memory.

3.6 Proposed algorithm while making Dictionary:

A dictionary of 5000 most frequently used

words is created. The words are then arranged in
decreasing order of their length i.e. highest length
words are listed in the beginning of the dictionary
followed by the lower length words. Then
codewords are assigned to them based on the
dictionary based transformation technique
“StarNT.” The first word is assigned as “a”, second
word as “b”,26th word as “z”,27th word as aa, 28th
word as “ab”,53rd word as “aaa”,54th word as
“aba”,55th word as “aca” and so on. It is found that
this generation of codewords is efficient for words
that are greater than 3 because the codewords
assigned to them are comparatively less than the
length of the word. However problem arises when
the words are of length smaller than 4 as because in
that case length of the codeword is greater than the
length of the word. To overcome this drawback,
codewords are not assigned for those words. On
encoding, these words will remain unaltered. The
advantage of this technique is that for the words
that are of length greater than 3, codewords of less
length are obtained compared to original word
means some amount of precompression is obtained
before applying to any existing transformation
algorithms. The words which are not found in the
dictionary are stored in a temporary file and also
added to the words.txt file, during encoding these
words remain as they are. On making the dictionary
again, the new words will be added to the
dictionary and the dictionary will assign some
codewords for these words.

3.7 Algorithms used:

BWCA = BWT + MTF + RLE + Huffman

Proposed Method = BWT + RLE +MTF+RLE

Huffman

Dictionary Method1 = Dictionary + BWCA

Dictionary Method2 = Dictionary + Proposed

Method

After observing the method based on
original BWCA, we have designed one proposed
method. Block diagram of all these methods are

shown below. To improve the compression ratio
one dictionary based transformation algorithm is
designed on the basis of starNT transformation.
This dictionary is also introduced in BWCA and
Proposed Method.

Method based on original BWCA:

Proposed Method:

Dictionary Method1:

Dictionary Method2:

4.EXPERIMENTAL RESULTS
4.1 Experimental Setup

1)Text File: This block reads from a text file.
2)BWT: This block performs Burrows Wheeler
Transform in the text file by taking block size of
100 bytes and writes the output in BWT.txt file.
3)RLE: This block performs Run Length Encod
ing once in the output of MTF and next in the
output of BWT and writes the output in RLE.txt
file.
4)MTF : This block performs Move To Front once
in the output of BWT and next in the output of
RLE and writes the output in MTF.txt file.
5)Huffman: This block applies Huffman coding in
the output of RLE and writes the output in
HUFFMAN.txt file.
6)Dictionary: This block performs encoding of
words from the dictionary in the text file and writes
the output in DICTIONARY.txt file.
7)BWCA: This block applies BWCA on the
encoded dictionary code and writes the output in
the compressed file.
8)Proposed Method: This block applies Proposed
Method on the encoded dictionary code and writes
the output in the compressed file.
9)Compressed file: This block contains the
compressed file.

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 1– Mar 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 8

The performance analysis of the BWCA
transformation algorithms along with the proposed
method are done for different text files of different
size. A comparison table is drawn in which
comparison is done in terms of compression ratio.
Implementation is done in JAVA for the different
compression algorithms. The result is tabulated
below.
Compression Ratio (CR) = [(Original Size −
Compressed Size) ∕ Original Size] ×100

Table 4.1 Size of different files before and after
compression and their compression ratio with
dictionary.

4.2 Different Graphs

Figure 4.2.1 Average File Size

Figure shows the average file size of the
original files together with dictionary with BWCA
and dictionary with proposed method. Quite good
amount of compression is taking place compared to
original file size. Almost similar compression is
seen in both the cases.

Figure 4.2.2 Comparision of Compressed Files

Fig shows the comparison of the different
compressed files for Dictionary with BWCA and
Dictionary with ProposedMethod. Different files
are compressed at different rate for both the
methods. For some files compression is showing
better in case of Dictionary with BWCA whereas
for other files compression is showing better in
case of Dictionary with Proposed Method.

Figure 4.2.3 Comparison of the methods using their
compression ratios

Figure shows the comparison of the
methods dictionary with BWCA and dictionary
with ProposedMethod using their compression
ratios. Higher the compression ratio, more efficient
is the algorithm. It is seen that different files are
compressed at different rate for both the methods.

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 1– Mar 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 9

Figure 4.2.4 Average Compression ratio

Fig shows the average compression ratio
of dictionary with BWCA and dictionary with
proposed method. However dictionary with
ProposedMethod is not showing better average
compression ratio compared to dictionary with
BWCA which indicates the significance of MTF
immediately after BWT before applying existing
compression algorithm.

5.CONCLUSION

After doing a detail study and various
experiments on text files it is seen that application
of dictionary based transformation techniques prior
to transformation algorithms increases the
compression ratio and thus contribute towards
better compression. So the use of such type of
reversible transformation technique is very useful
in the field of lossless data compression. In this
paper the data structure applied to the dictionary is
not optimal, as in practical implementation time
complexity will be more as every time dictionary
needs to be rebuilt again and again. Also dictionary
needs to be updated for special characters,
punctuation marks etc.

REFERENCES
[1] M. Burrows, and D.J. Wheeler, “A Block-sorting
Lossless Data Compression Algorithm,” Digital Systems
Research Center Research Report 124, 1994.
[2] Deorowicz, S. Improvements to Burrows-Wheeler
Compression Algorithm. Software – Practice and
Experience, 30(13), 1465–1483, 2000.
[3] Awan, F, Zhang, N, Motgi, N, Iqbal, R, Mukherjee,
A. LIPT: A reversible lossless text transform to improve
compression performance. In Proceedings of the IEEE
Data Compression Conference 2001, Snowbird, Utah, J.
Storer and M. Cohn, Eds. 481, 2001.
[4] Jürgen Abel, Ingenieurbüro Dr. Abel
GmbH,Lechstrasse,
“Incremental Frequency Count – A post BWT-stage for
the

Burrows- Wheeler Compression Algorithm “, Software:
Practice and Experience Volume 37, Issue 3, pages 247–
265, March 2007
[5] Kruse H, Mukherjee A. “Preprocessing Text to
Improve
Compression Ratios”. In Storer JA, , Proceedings of the
1998
IEEE Data Compression Conference, Los Alamitos,
California,1998
[6] Arnavut, Z, Magliveras, S. Block Sorting and
Compression. Proceedings of the IEEE Data
Compression Conference 1997, Snowbird, Utah, J. Storer
and M. Cohn, Eds. 181–190, 1997.
[7] B. Balkenhol, S. Kurtz , and Y. M.Shtarkov.
”Modifications of the Burrows Wheeler Data
Compression Algorithm” Proceedings of Data
Compression Conference, Snowbird Utah, pp. 188-197,
1999.
[8] Rexline S.J , Robert L “Dictionary Based
Preprocessing Methods in Text Compression - A
Survey” International Journal of Wisdom Based
Computing, Vol. 1 (2), August 2011
pp. 13-18.

[9]M.P. Bhuyan,V. Deka,S. Bordoloi “Burrows Wheeler
based data compression and secure transmission”
Proceedings of 1st National Conference on Research &
Higher Education in Information Technology (RHEIT –
2013),4th – 5th February,2013.

[10] P. Jeyanthi, V. Anuratha “Analysis of lossless
reversible transformation” Journal of Global Research in
Computer Science Volume 3, No. 8, August 2012

[11] Radu R¸ADESCU “Transform Methods Used in
Lossless Compression of Text Files” Romanian journal
of science and technology.Volume 12, Number 1, 2009,
101-115
 [12] V.K. Govindan, B.S. Shajee mohan, “IDBE – An
Intelligent Dictionary Based Encoding Algorithm for

Text Data Compression for High Speed Data
Transmission Over Internet”.
[13] P. Skibi ski, Sz. Grabowski, S. Deorowicz,
“Revisiting dictionary based compression,” Software–
Practice and Experience, 2005; vol. 35, no. 15, pp. 1455–
1476, 2005.

