
 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page310

ACO, Its Modification and Variants

Akash Tayal1, Prerna Khurana2, Priyanka Mittal3, Sanjana Chopra4
1(Electronics and Communication Engineering, Indira Gandhi Delhi Technical University for Women, India)
2(Electronics and Communication Engineering, Indira Gandhi Delhi Technical University for Women, India)
3(Electronics and Communication Engineering, Indira Gandhi Delhi Technical University for Women, India)
4(Electronics and Communication Engineering, Indira Gandhi Delhi Technical University for Women, India)

 ABSTRACT : Ant colony optimization (ACO) is
a P based metaheuristic algorithm which has been
proven as a successful technique and applied to a
number of combinatorial optimization problems
and is also applied to the Traveling salesman
problem (TSP). TSP is a well-known NP-complete
combinatorial optimization (CO) problem and has
an extensive application background.
The presented paper proposes an improved version
of Ant Colony Optimization (ACO) by modifying its
parameters to yield an optimal result. Also this
paper shows the experimental results and
comparison between the original ACO and
Modified ACO. Further this paper proposes two
variants of ACO according to their specific
application. Various city distributions have also
been discussed and compared.

Keywords - Ant Colony Optimization (ACO),
Artificial Ants (AA), Combinatorial Optimization
(CO), Particle Swarm Optimization (PSO),
Travelling Salesman Problem (TSP)

1. INTRODUCTION

There are numerous fields where
optimization techniques can be useful for
example science, engineering, economics
and business. The real world problems are
hard to solve, hence we make use of
approximate algorithms with the aim of
minimization of time, cost, and risk or the
maximization of yield, quality, and
efficiency.
 Metaheuristics [2] solve instances of
problems that are believed to be hard in
general, by exploring the usually large
solution search space of these instances.
These algorithms achieve this by reducing
the effective size of the space and by
exploring that space efficiently.
Metaheuristics serve three main purposes:
solving problems faster, solving large

problems, and obtaining robust
algorithms. Moreover, they are simple to
design and implement, and are very
flexible. In the recent years, swarm
intelligence, a new class of
Metaheuristics, has emerged and attracted
researchers’ attention. Swarm intelligence
imitates the social behavior of natural
insects or animals to solve complex
problems. Some commonly used swarm
intelligence algorithms include ant colony
optimization (ACO), particle swarm
optimization (PSO) and artificial bee
colony. ANT COLONY OPTIMIZATION
is a P- based Metaheuristics technique
which is a swarm intelligence technique,
uses the concept of artificial ants acting as
pheromone carrying agents, is commonly
used in solving TRAVELLING
SALESMAN PROBLEM. In this paper in
section 2. ,we, first of all, have introduced
the basic technique of ACO, describing
various aspects of this algorithm following
which we have defined our problem
(TSP) in hand and the procedure to solve
it in section 3. In section 4. We have
shown how ACO is used for solving TSP.
Section 5 mentions the selection of the
optimal parameters of ACO and section 6.
proposes variants of ACO .
 Further section 7. gives the various city
distributions and compares them. Section
8. concludes the entire paper indicating
the pros and cons of the parameters
obtained and the city distribution selected.

2. Theory and mathematical model of
Ant Colony Optimization

2.1. Theory of Ant Colony Optimization

ACO is a population-based swarm
intelligence algorithm and was proposed

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page311

by Dorigo [3][4] and Gambardella. This
algorithm has been inspired by the
foraging behavior of real ant colonies.
Ants coordinate their activities via
stigmergy, a form of indirect
communication mediated by modifications
of the environment. When real ants
collaborate to accomplish a task such as
bringing food back to their nest they leave
pheromones as they move back and forth
between food sources and nest.
Pheromone is a chemical that is olfactive
and volatile in nature. This chemical
substance has a decreasing action over
time and the quantity left by one ant
depends on the amount of food.

Figure 1: formation of shortest and optimal
path by ants [10]

As shown in the Fig.1, there is an equal probability
for the ants to choose either path a or b. As the
central path is shorter and so requires less travel
time, the ants will end up leaving a higher level of
pheromones. The more the ants take this path, the
higher the pheromone trail. Hence, there is an
emergence of the shortest path as shown in Fig.1.
This pheromone updating is an autocatalytic Or a
positive feedback process which results in an
optimal path.

2.2. Mathematical Model

The ACO algorithm uses the Artificial Ants (AA)
in order to solve real world problems. The
algorithm consists of basically two iterated steps:
solution construction and pheromone update [6][7]

 Solution construction: Artificial ants
create the solution by forming decision
graphs in a probabilistic way. Decision

graphs are constructed on the basis of
pheromone trails which memorize the
good generated solutions and these can be
altered dynamically.

- Pheromone trails: Indeed, the pheromone
trails memorize the characteristics of
“good” generated solutions, which act as a
positive feedback for the construction of
new solutions by the ants. The pheromone
trails change dynamically during the
search to reflect the acquired knowledge.
It represents the memory of the whole ant
search process.

 Pheromone update: It is done in two
phases:-

- An evaporation phase where the
pheromone trails decreases automatically
by a constant rate. Each pheromone value
is reduced by a fixed proportion:

 훕퐢퐣		 = (ퟏ − 퐫퐫)훕퐢퐣, ∀ i, j ∈ [1, n] (1)
Where rr ∈ [0, 1] represents the reduction
rate of the pheromone

 A reinforcement phase where the pheromone trail
is updated according to the generated solutions

Figure 2: pseudo code of ACO

Initialize the pheromone trails;

Repeat
For each ant Do

Solution construction using the pheromone trail;
Update the pheromone trails:

Evaporation;
Reinforcement;

Until stopping criteria
Output: Best solution found or a set of solutions.

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page312

UPDATE
 PHEROMONE

TRAILS

Figure 3: flowchart of ACO

3. Travelling Salesman Problem

3.1. Theory

Traveling salesman problem (TSP) [10] is a
well known, popular and extensively
studied problem in the field of
combinatorial optimization. Its statement
is apparently simple, but still it remains
one of the most challenging problems in
operational research. It is an optimization
problem to find a shortest closed tour that
visits all the given cities only once. It is
known as a classical NP-complete
problem [13], which has extremely large
exploration spaces and is very
complicated to solve. It is defined as
‘Given a set of cities and the distance
between each possible pair, the Travelling
Salesman Problem is to find the best
possible way of ‘visiting all the cities
exactly once and returning to the starting
point’ [8]

3.2. Mathematical Model
A complete weighted graph G= (N, E) can
be used to represent a TSP, where N is the
set of n cities and E is the set of edges
(paths) fully connecting all cities. Each
edge (i,j)∈E is assigned a cost dij, which
is the distance between cities I and j. dij
can be defined in the Euclidean space and
is given as follows[14]:

															퐝퐢퐣 = 	 퐱퐢 − 퐱퐣
ퟐ

+ 퐲퐢 − 퐲퐣
ퟐ
 (2)

INITIALISE
PHEROMONE TRAILS

(MEMORY)

EVAPORATION

REINFORCEMENT
PROCESS

START

SOLUTION
CONSTRUCTION USING

PHEROMONE TRAILS

GLOBAL UPDATE
PHEROMONE

ALL ANTS
SELECTED?

STOPPING
CRITERIA

OPTIMAL
PATH

STOP

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page313

Figure 4: flowchart of TSP

4. Procedure for solving TSP using
ACO [9]

1) Pheromone trails: A pheromone τij will
be related with each edge (i, j) of the
graph G. The pheromone information can
be represented by an n × n matrix τ where
each element τij of the matrix expresses
the attractiveness to have the edge (i, j) in
the tour. The pheromone matrix is usually
initialized by the same values. During the
search, the pheromone will be updated to
approximate the effectiveness of any edge
of the graph.

2) Solution construction: Each ant will

construct a tour in a stochastic way. Given
an initial arbitrary city i, an ant will select
the next city j with the probability
퐏퐢퐣 = 	

훕퐢퐣
∑ 훕퐢퐣퐤훜퐒	

							∀	퐣	훜	퐒 [9] (3)

Where,
 The set S represents the not yet visited

cities of the graph G.
 τ represent the pheromone strength

The ants may use a randomly selected initial city in
the construction phase. The additional problem-
dependent heuristic is defined by considering the
values 휂 or the visibility equal to 1/dij where dij
represents the distance between the cities i and j.
The higher the heuristic value 휂 , the shorter the
distance dij between cities i and j i.e. a more
preferred node in terms of distance
Computing the decision transition probabilities 푃
is performed as follows:

퐏퐢퐣 = 	
훕퐢퐣
훂×훈퐢퐣

훃

∑ 훕퐢퐤
훂 ×퐤	훜	퐒 훈퐢퐤

훃 				∀	퐣	훜	퐒 [10] (4)

Where,
 η represents the visibility of the next

node or city
 α represents the pheromone weighing

factor. If α = 0, the ACO algorithm will be
similar to a stochastic greedy algorithm in
which the closest cities are more likely
selected.

 β represents distance weighing factor. If β
= 0, only the pheromone trails will
become dominant. In this case, a speedy
emergence of stagnation may occur where
all ants will construct the same suboptimal
tour .

3) Pheromone update : Each ant will
increment the pheromone related with the
selected edges in a manner that is
proportional to the quality of the obtained
tour :[10]

				훕퐦퐧 = (ퟏ − 퐫퐫)훕퐦퐧 + ∑ 훕퐦퐧퐤퐍퐚퐧퐭퐬
퐤 ퟏ 	+ 퐞훕퐦퐧퐞퐥퐢퐭퐞 (5)

Where,
 흉풎풏 = pheromone laid by ant k between

city m and city n
 rr = pheromone evaporation constant
 e = elite path weighting constant.

START

INITIALISE
PHEROMONE

TRAILS

SOLUTION CONSTRUCTION
USING PH. TRAILS FROM ‘S’
AND RANDOM SELECTION

OF INITIAL CITY i

SELECT NEW CITY j

 REDUCE SAMPLE SPACE ‘S’

S = Ø?

UPDATE PH. TRAIL i.e.,
EVAPORATION AND

REINFORCEMENT

MAXITER?

OPTIMAL SOLUTION
OBTAINED

STOP

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page314

 흉풎풏풆풍풊풕풆= pheromone laid on the best path
found by the algorithm to this point.

Then, good tours will emerge as the result of the
collaboration between ants through the pheromone
trails. The typical evaporation procedure is applied
for the pheromone trails. For each edge, its
pheromone τij will evaporate as follows:[10]
훕퐢퐣		 = (ퟏ − 퐫퐫)훕퐢퐣 		∀					퐢	, 퐣	 ∈ [ퟏ,퐍퐜퐢퐭퐲] (6)

5. Optimal Parameters For ACO

Notations used
 Nants – number of ants
 Ncity – number of cities
 Phmone – initial pheromone level
 Iter – number of iterations
 rr – evaporation rate
 a – pheromone weighing factor
 b – distance weighing factor

5.1. Variation of Nants with Ncity

In this method we are observing the variation of
Nants with Ncity in order to find the relationship
between them.
Phmone=0.9, a=2, b=8, rr=0.25, iteration=1000

Table 1:Variation of Ncity with Nants

The number of ants should be less than or equal to
the number of cities for quick results however, the
distance remains same. This maybe because as the
number of ants are increased for a given number of

cities only the computation time increases while the
distance remains same.

Nants ≤ Ncity
5.2. Variation of Phmone with Nants and

Ncity
 Ncity= 30, a=2, b=8, rr=0.25, iter=1000

 Table 2:Variation of Phmone with Nants

Table 3: Variation of Phmone with Ncity

Phmone
= 0.1

Phmone
= 0.3

Phmone
= 0.5

Phmone
= 0.9

Nants
= 30

21.453 21.880 22.267 21.502

Nants
= 40 29.755 29.108 29.228 29.928

Nants
= 50

37.636 37.469 37.704 37.810

Nants
= 60

44.911 44.680 45.064 44.517

Nants
= 70

51.432 52.623 52.653 53.275

Nants
= 80

60.760 61.011 61.692 61.874

Nants
= 90

68.696 69.365 68.671 69.293

Nants
= 100

78.070 77.542 77.525 77.771

Ncity =
30

Ncity =
40

Ncity =
50

Ncity =
60

Nants =
30

21.502 36.541 51.202 72.651

Nants =
40 29.928 49.389 69.162 101.385

Nants =
50

37.810 63.647 94.174 127.994

Nants =
60

44.517 76.705 112.591 155.476

Nants =
70

53.275 90.175 130.358 185.154

Nants =
80

61.874 106.692 150.885 211.827

Nants =
90

69.293 114.582 170.264 241.261

Nants =
100

77.771 131.713 190.051 270.209

Phmone
= 0.1

Phmone
= 0.3

Phmone
= 0.5

Phmone
= 0.9

Ncity
= 30

21.257 22.472 21.121 21.502

Ncity
= 40 37.747 37.437 36.744 36.541

Ncity
= 50

50.288 53.245 50.229 51.202

Ncity
= 60

71.963 72.675 71.651 72.650

Ncity
= 70

93.455 95.231 95.860 95.828

Ncity
= 80

125.606 123.994 125.168 124.732

Ncity
= 90

151.891 151.566 148.995 149.485

Ncity
= 100

197.594 196.071 196.029 199.461

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page315

The initial pheromone value of 0.3 displays better
results in terms of time for most of the cases. As
we are increasing the number of ants due to
repeated deposition of pheromone the lesser initial
value of pheromone displays better results.

Pheromone = 0.3

5.3.1. Time Variation of rr with Nants
Ncity=30, a=2 , b=8 , phmone=0.5 , iter=1000

Table 4:Time variation of rr with Nants

When rr=1 , the initial pheromone level is totally
not included i.e. no memory of initial pheromone
levels. For a given number of ants as the rr is
increased, the computation time is reduced.

5.3.2 Distance variation of rr with Nants
 Ncity=30 , a=2 , b=8 , phmone=0.5 , iter=1000

 Table 5:Distance variation of rr with
Nants

Distance increases with rr for a given number of
Nants since the influence of initial pheromone
levels decrease hence leading to randomness. To
balance between both time and distance variation,
optimum value of rr is taken to be 0.5.

rr = 0.5

5.4.1. Time variation of rr with Ncity
Nants=30 , a=2 , b=8 , phmone=0.5 , iter=1000

Table 6:Time variation of rr with Ncity

 rr =
0.25

rr = 0.5 rr =
0.75

rr = 1

Nants =
30

22.267 22.11 21.927 21.822

Nants =
40

29.228 29.626 29.350 28.308

Nants =
50

37.704 36.450 35.831 36.682

Nants =
60

45.064 44.760 44.685 43.465

Nants =
70

52.653 52.061 52.951 50.107

Nants =
80

61.692 60.952 60.660 60.385

Nants =
90

68.671 69.638 67.066 66.352

Nants =
100

77.525 75.993 74.433 75.493

 rr =
0.25

rr =
0.5

rr =
0.75

rr = 1

Nants
= 30

44 44 45 45

Nants
= 40

44 44 43 44

Nants
= 50

44 43 44 45

Nants
= 60

46 44 44 45

Nants
= 70

43 43 43 44

Nants
= 80

44 44 44 43

Nants
= 90

44 44 46 43

Nants
= 100

43 44 43 44

 rr =
0.25

rr = 0.5 rr =
0.75

rr = 1

Ncity =
30

22.121 21.848 22.135 21.822

Ncity =
40

36.744 36.373 37.645 34.495

Ncity =
50

50.829 52.761 50.847 47.308

Ncity =
60

71.651 69.491 73.071 67.025

Ncity =
70

95.860 95.131 99.055 89.910

Ncity =
80

125.168 116.754 123.522 110.979

Ncity =
90

148.995 140.528 141.054 130.294

Ncity =
100

197.929 191.937 197.285 154.284

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page316

5.4.2. Distance variation of rr with Ncity
 Nants=30, a=2 , b=8 , phmone=0.5 , iter=1000
Table 7:Distance variation of rr with Ncity

Optimum value of rr both in terms of time and
distance can be seen as 0.5

rr = 0.5

5.5.1. Time variation of iter with Nants
 Ncity=30 , a=2, b=8 , phmone=0.5, rr=0.25
Table 8: Time variation of iter with Nants

5.5.2. Distance variation of iter with Nants

 Ncity=30 , a=2, b=8 , phmone=0.5, rr=0.25
Table 9: Distance variation of iter with

Nants

Time is increasing when the number of iterations is
increased for a given number of ants. This is so
because the number of loops has increased. Not
much information can be drawn out from the
distance variation graph since the number of cities
is same; hence there is little variation with respect
to ants.

5.6.1. Time variation of iter with Ncity
 Nants=30, a=2, b=8, phmone= 0.5, rr=0.25

 rr =
0.25

rr = 0.5 rr =
0.75

rr = 1

Ncity =
30

44 44 45 45

Ncity =
40

53 51 53 53

Ncity =
50

55 54 56 55

Ncity =
60

65 64 67 67

Ncity =
70

70 70 68 73

Ncity =
80

78 74 81 77

Ncity =
90

82 83 83 93

Ncity =
100

88 84 84 85

 iter =
10

Iter
=
100

Iter =
400

Iter =
800

Iter =
1000

Nants
= 30

0.2843 2.329 9.333 18.077 22.121

Nants
= 40 0.364 3.082 11.698 23.294 29.228

Nants
= 50

0.450 3.869 15.130 30.132 37.707

Nants
= 60

0.520 4.496 17.741 35.460 45.064

Nants
= 70

0.625 5.354 20.609 41.195 52.653

Nants
= 80

0.707 6.521 25.207 49.768 61.692

Nants
= 90

0.778 7.147 27.767 54.677 68.671

Nants
= 100

0.881 8.071 31.577 62.843 77.525

 iter =
10

Iter =
100

Iter =
400

Iter =
800

Iter =
1000

Nants
= 30

47 47 46 46 44

Nants
= 40 47 43 43 43 44

Nants
= 50

45 43 44 44 44

Nants
= 60

43 43 42 43 46

Nants
= 70

44 43 43 43 43

Nants
= 80

44 43 45 45 44

Nants
= 90

45 45 43 44 44

Nants
= 100

44 44 43 46 43

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page317

Table 10:Time variation of iter with Ncity

5.6.2. Distance variation of iter with Ncity
Nants=30 , a=2 , b=8 , phmone= 0.5 , rr=0.25

Table 11:Distance variation of iter with
Ncity

In TABLE 10,we can see that the time is increasing
as the numbers of iterations are increased since the
number of loops is increasing. In TABLE 11, with
increasing number of iterations the ACO yields
more optimum results as for a given number of
cities the distance is decreasing but after a certain
number of iteration the result is getting static
leading to just increased amount of time. It is
observed that the max number of iterations should
be of the order of 10 times the number of cities as it
is giving favorable results.

 5.7.1. Distance variation of a and b
Ncity=30,Nants=30,rr=0.25,phmone=0.5,iter=1000

Table 12:Distance variation of a and b

5.7.2. Time variation of a and b
Ncity=30,Nants=30,rr=0.25,phmone=0.5,iter=1000

 iter =
10

Iter =
100

Iter =
400

Iter =
800

Iter =
1000

Ncity
= 30

0.2843 2.329 9.333 18.077 22.121

Ncity
= 40 0.449 3.969 15.061 28.129 36.744

Ncity
= 50

0.645 5.133 19.851 38.703 50.829

Ncity
= 60

0.887 7.715 28.253 54.911 95.860

Ncity
= 70

1.151 9.950 37.091 76.570 97.929

Ncity
= 80

1.515 12.595 47.471 87.054 125.168

Ncity
= 90

1.752 14.456 53.44 106.609 148.995

Ncity
=
100

2.303 19.508 67.52 126.234 197.929

 Iter =
10

Iter =
100

Iter =
400

Iter =
800

Iter =
1000

Ncity
= 30

47 47 46 46 44

Ncity
= 40 55 51 54 53 53

Ncity
= 50

56 56 55 55 55

Ncity
= 60

67 67 67 66 88

Ncity
= 70

74 71 74 68 70

Ncity
= 80

81 79 77 75 78

Ncity
= 90

87 83 87 89 88

Ncity
= 100

94 87 86 88 88

 a =
0.5

a = 1 a = 2 a = 3 a = 4 a = 5 a = 6

b =
0.5

87 70 48 52 59 65 79

b = 1 74 58 48 49 53 53 57
b = 2 59 48 46 49 48 51 50
b = 3 53 48 46 46 48 51 48
b = 4 50 50 45 45 51 47 52
b = 5 49 46 45 46 48 48 48
b = 6 46 46 45 46 45 46 45
b = 7 45 45 47 46 45 48 47
b = 8 47 45 44 46 47 46 45
b = 9 46 47 46 46 48 46 47
b =
10

46 46 46 47 46 46 44

b =
11

45 47 45 45 46 45 46

b =
12

45 45 44 45 46 46 44

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page318

Table 13:Time variation of a and b

It can be observed that the worst values are

appearing for a, b<1 therefore we should keep
the value of a and b >1. When a= 2 we are
getting the minimum time for all the values of
b. hence the best value for a is 2. As b is
increasing graph converges quickly. Hence we
conclude that value of b should be more. Also
it has been observed that when value of b > a
ACO yield in better results. In the time
variation graph quick and optimal results are
obtained when a =2 b= 2 When emphasis is on
distance, a= 2 and b= 8 yields the favorable
result with the value of dmin as 44.

Original results:

a=2, b=6, rr=0.5, phmone=0.1,
Nants=Ncity=30, iter=600

 Figure 5: hamiltonian cycle

Figure 6: variation of dmin with

iter
 Time Elapsed =14.32 s
 Dmin=44

Compared to original code, keeping the
number of iterations same as 600

a=2, b=8, rr=0.5, phmone=0.5, Nants=Ncity=30

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

 a =
0.5

a = 1 a = 2 a = 3 a = 4 a = 5 a = 6

b =
0.5

28.12
6

25.34
3

23.60
4

25.77
5

24.36
7

24.29
7

22.90
7

b = 1 25.83
0

22.89
1

20.56
6

23,57
1

20.79
8

20.28
4

20.92
8

b = 2 26.56
3

20.73
3

18.90
7

22.77
4

21.29
9

20.81
9

20.96
3

b = 3 29.42
5

26.77
8

24.67
8

21.18
0

25.80
0

28.86
3

25.94
0

b = 4 28.7
,83

26.04
2

23.71
0

28.77
4

27.60
7

26.59
4

26.23
4

b = 5 28.29
6

25.53
0

23.25
4

28.02
4

27.20
5

26.33
5

25.82
2

b = 6 28.30
0

24.96
7

22.87
3

27.37
5

26.89
9

26.11
1

26.02
8

b = 7 27.52
9

24.16
3

21.80
7

26.81
3

26.03
7

26.43
3

25.87
0

b = 8 27.24
8

23.77
5

21.90
1

26.58
4

26.58
6

27.48
7

27.03
6

b = 9 26.50
0

23.45
4

21.19
8

26.72
4

26.60
4

25.79
1

26.07
2

b =
10

26.45
1

23.31
9

21.06
1

26.72
4

26.39
4

25.93
7

26.00
1

b =
11

26.04
8

23.45
6

20.58
6

26.38
7

25.99
5

26.20
8

26.25
1

b =
12

25.84
4

22.91
0

20.78
2

26.23
3

25.83
9

26.39
4

26.34
4

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page319

 Figure 7: modified Hamiltonian cycle

 Figure 8: modified variation of dmin
with iter

 Time Elapsed = 13.633s
 Dmin = 39

Thus compared to the original results we can
see that there is a significant improvement in
terms of distance from 44 to 39 giving a
11.36% decrease. Also, in terms of time there
is a decrease from 14.32s to 13.633s, which
gives a 4.8% improvement. Thus the change
of parameters has resulted in achieving a
relatively more optimized result in terms of
both distance and time for cities=ants=30.

Graph showing the comparison between

1. a=0
2. b=0
3. original
4. modified

This graph clearly shows that the best results are
obtained when the code is modified to give
appropriate value of parameters and gives the worst
result when b=0 i.e. the path formation depends
entirely on pheromone levels.

Figure 9: comparison between different
parameter values

From the observations made above it can be
concluded that the values of the parameters are:

Figure 10: optimal parameter values for

ACO

6. VARIANTS OF ACO
6.1. NO HAMILTONIAN CYCLE

(STRAIGHT LINE PATH)
When TSP is implemented using ACO we get a
connected graph containing all the nodes to be
visited. But the algorithm can also be modified in
order to find the shortest distance between two
nodes with the constraint that all other nodes have
to be visited as well.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600
3.9

3.95

4

4.05

4.1

4.15

4.2

a,b>1 also b>2a
here, a-2
 b=8
0<rr<1 ; rr=0.5
0<phmone<1 ; phmone=0.5
Nants= Ncity
Iter> 10(Ncity)

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page320

1) Mathematical Model

Algorithm for no Hamiltonian cycle (straight

path)

Figure 11: pseudo code for no Hamiltonian

cycle ACO

2) Flowchart

Figure 12: flowchart for no
Hamiltonian cycle ACO

Initialize the pheromone trails;
Repeat

For each ant Do
 Initialization of tours such that no node is repeated;
 Solution construction using the pheromone trail;

Update the pheromone trails:
Evaporation;
Reinforcement;

 Until Stopping criteria .
Output: Best solution found or a set of solutions

INITIALISE
PHEROMONE TRAILS

(MEMORY)

EVAPORATION

REINFORCEMENT
PROCESS

SOLUTION
CONSTRUCTION USING

PHEROMONE TRAILS

STOPPING
CRITERIA

OPTIMAL
PATH

STOP

START

INITIALISE TOUR SUCH
THAT NO NODE IS

REPEATED

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page321

3) SIMULATION RESULT:

Ncity=30 , Nants= 30 , a=2 , b=8 , rr= 0.9,
phmone=0.9 , Iter=1000

 Figure 13: straight path

 Time Elapsed =24.117 seconds
 Dmin=39
 Converges in less than 50 iterations

Figure 14 : convergence of distance with
iteration

6.2. TIMING CONSTRAINTS
This is another variation of ACO where we have
imposed timing restriction on our salesman
wherein the salesman is expected to complete the
tour in a given interval of time .If he is successful
to do so , the output is displayed to the user
otherwise no result is displayed.

1) ALGORITHM FOR TIME CONSTRAINT

Figure 15: pseudo code for time constraint
ACO

2) FLOWCHART

UPDATE
 PHEROMONE

TRAILS

Figure 16: flowchart of time constraint
ACO

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000
3.5

4

4.5

5

5.5

6

6.5

Initialize the pheromone trails;
Repeat

For each ant Do
Solution construction using the pheromone trail;

Update the pheromone trails:
Evaporation;

Reinforcement;
Until stopping criteria

Check for satisfaction of timing condition.
If time consideration is not met Output: no

solution.
Else Output: Best solution found or a set of solutions.

INITIALISE
PHEROMONE TRAILS

(MEMORY)

EVAPORATION

REINFORCEMENT
PROCESS

SOLUTION
CONSTRUCTION USING

PHEROMONE TRAILS

STOPPING
CRITERIA

OPTIMAL
PATH

START

CHECK FOR TIMING
CONSIDERATION

NO
SOLUTION

STOP

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page322

3) TABLE SHOWING TIME

COSIDERATION RESULTS
Ncity=30 , Nants= 30 , rr=0.5, phmone =0.5 , a=2 ,
b=8 , iter =1000
Table 14:Time constraint ACO

4) SIMULATION RESULTS:

 Figure 17: hamiltonian cycle

 Figure 18: variation of dmin with iter

 Time Elapsed =22.2671seconds
 Dmin=44
 Converges in less than 100 iterations

7. VARIOUS CITY DISTRIBUTIONS

For all the previous cases we have considered a
uniform distribution but we can also consider other
distributions as well to distribute the city locations.
The various distributions considered are:

A. GAUSS NORMAL DISTRIBUTION
A normal Gaussian distribution pdf is

풇(풙,흁,흈) =
풆

(풙 흁)ퟐ
ퟐ흈ퟐ

흈√ퟐ흅

Where µ is the mean or expectation of the
distribution
And parameter σ is the standard deviation.
Here µ=0 and σ=1

B. EXPONENTIAL DISTRIBUTION
Pdf of exponential distribution is given as

풇(풙,흀) = 흀풆 흀풙							풙 ≥ ퟎ
ퟎ																풙 < 0

Where λ is the parameter of the distribution often
called rate parameter. Here λ=1.

C. POISSON DISTRIBUTION
The pdf is given by

풇(풙,흀) =
흀풙풆 흀

풙!

Where λ is Poisson distribution parameter.
Here λ=5.
Tables showing comparison between the four
distributions on the basis of variation of distances
covered and time elapsed

Ncity=30 , Nants= 30 , rr=0.5, phmone =0.5 , a=2 ,
b=8,iter=600

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000
3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

TIME CONSTRAINT Output
Time = 5 No result
Time = 10 No result
Time = 20 No result
Time = 30 22.2671
Time = 40 22.2671

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page323

Table 15:Comparision of various city
distributions(distance)

Table 16:Comparison of various city
distributions(time)

GAUSS NORMAL DISTRIBUTION

FIGURE 19: hamiltonian cycle

FIGURE 20:variation of Dmin with Iter

EXPONENTIAL DISTRIBUTION

Figure 21: hamiltonian cycle

Figure 22: variation of Dmin with Iter

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600
9.5

10

10.5

11

Iter Uniform
distribution

Gauss
normal
distribution

Exponential
distribution

Poisson
distribution

100 2.1922 2.1023 2.1723 3.1561
200 4.4456 4.3918 4.3406 6.2608
300 6.4837 6.3519 6.3971 9.3476
400 8.6661 8.1074 8.3676 12.5140
500 10.9974 10.6782 10.5646 15.6277
600 13.2542 12.7943 12.7538 18.7444
700 13.5349 15.3065 14.8437 21.9669
800 17.8235 17.1270 16.9897 25.2293

iter Uniform
distribution

Gauss
normal
distribution

Exponential
distribution

Poisson
Distribution

100 3.9374 16.3119 9.6465 35.6656
200 3.9374 16.9518 9.6465 35.6656
300 3.9374 16.5949 9.6433 35.6656
400 3.9374 16.1133 9.6433 35.6656
500 3.9374 15.0799 9.6433 35.6656
600 3.9374 13.3392 9.6433 35.6656
700 3.9374 13.9707 9.6433 35.6656
800 3.9374 17.9863 9.6433 35.6656

0 100 200 300 400 500 600
14.5

15

15.5

16

16.5

17

17.5

18

-2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page324

POISSON DISTRIBUTION

Figure 23: hamiltonian cycle

Figure 24: variation of Dmin with Iter

8. CONCLUSIONS
 From the parameter variation section, it can be
concluded that the values of the parameters are:

 a,b>1 also b>2a
 0<rr<1 ;
 0<phmone<1 ;
 Nants= Ncity
 Iter> 10(Ncity)

The following conclusions can be drawn from the
distribution variation comparison table

 Time elapsed is highest for Poisson
distribution as compared to other
distributions.

 Time to converge is least for uniform
distribution.

 Variation in distance is maximum for
Gauss normal distribution.

 For exponential distribution the distance
variation is less .However the time to
converge is more as compared to uniform
distribution.

REFRENCES
1. Magnus Erik Hvass Pedersen, Hvass

Laboratories,
“Good Parameters for Particle Swarm
Optimization”, Technical Report no. HL10012010

2. M. Dorigo and T. Strutzle, “Ant colony
optimization,” MIT Press, Cambridge, MA, 2004

3. M. Dorigo, G.D. Caro, andL.M. Gambardella, “Ant
algorithms for discrete optimization,” ArtificialLife,
vol. 5, no. 2, page 137, 1999

4. T. Stutzle and H.H. Hoos, “Max-min ant system,”
Future Generation Comput. Syst., vol. 16, no. 8,page
889, 2000

5. J. Kennedy and C. E. Russell, “Swarm intelligence,”
in Morgan Kaufmann, Academic Press, 2001

6. P. N. Suganthan, N. Hansen, J. J. Liang, et al.,
“Problem definitions and evaluation criteria for the
cec 2005 special session on real-parameter
optimization,” Tech. Rep. 2005005, Nanyang
Technological University, Singapore; IIT Kanpur,
India, 2005.

7. M. I. Aouad, R. Schott, and O. Zendra, “A tabu
search heuristic for scratch-pad memory
management,” in Proceedings of the International
Conference on Software Engineering and
Technology (ICSET '10), vol. 64, pp. 386–390,
WASET, Rome, Italy, 2010.

8. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi,
“Optimization by simulated annealing,” Science, vol.
220, no. 4598, pp. 671–680, 1983. View at Scopus

9. “Practical GeniticAlgorithms” – Haupt and Haupt ,
second edition

10. “Metaheuristics – from Design to Implementation”
by El-Ghazali Talbi

11. Vittorio Maniezzo, Luca Maria Gambarde, Fabio de
Luigi.
http://www.cs.unibo.it/bison/publications/ACO.pdf

12. Monash University CSE 460 lecture notes
http://www.csse.monash.edu.au/~berndm/CSE460/L
ectures/cse460-9.pdf

13. “Ant colonies for the traveling salesman problem”
http://www.idsia.ch/~luca/acs-bio97.pdf

14. Dorigo, M. and Gambardella, L. M., Ant colonies for
the travelling salesman problem, Biosystems,
43(2):73–81, 1997.

15. Chengming, Q., An ant colony algorithm with
stochastic local search for the VRP, 8rd International
Conference on Innovative Computing Information
and Control, Los Alamitos, CA, USA, pp. 464–468,
IEEE Computer Society, 2008.

16. Lee, Z.-J., Su, S.-F., Chuang, C.-C., and Liu, K.-H.,
Genetic algorithm with ant colony optimization (GA-
ACO) for multiple sequence alignment, Applied Soft
Computing, 8(1):55–78, 2008.

17. Jun-Qing Li, Q.-K. P. and Xie, S.-X., A hybrid
variable neighborhood search algorithm for solving
multi-objective flexible job shop problems,
Computer Science and Information Systems,
7(4):907–930, 2010.

18. Negulescu, S., Dzitac, I., and Lascu, A., Synthetic
genes for artificial ants. Diversity in ant colony
optimization algorithms, INT J COMPUT
COMMUN, ISSN 1841-9836, 5(2):216– 223, 2010.

19. Zhang, X., Duan, H., and Jin, J., DEACO: Hybrid ant
colony optimization with differential evolution, IEEE
Congress on Evolutionary Computation, 921–927,
IEEE Computer Society, 2008.

4 6 8 10 12 14
6

8

10

12

14

16

18

0 100 200 300 400 500 600
40

45

50

55

60

65

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page325

20. Serbencu, A., Minzu, V., and Serbencu, A., An ant
colony system based metaheuristic for solving single
machine scheduling problem, The Annals of Dunarea
De Jos University of Galati, 3:19–24, 2007.

21. Neumann, F., Sudholt, D., and Witt, C., Rigorous
analyses for the combination of ant colony
optimization and local search. Ant Colony
Optimization and Swarm Intelligence, LNCS Berlin,
Heidelberg, 5217:132–143, Springer-Verlag, 2008.

22. Gan, R., Guo, Q., Chang, H., and Yi, Y., Improved
ant colony optimization algorithm for the traveling
salesman problems, Journal of Systems Engineering
and Electronics, 21(2):329– 333, 2010.

23. Jovanovic, R., Tuba, M., and Simian, D.,
Comparison of different topologies for islandbased
multi-colony ant algorithms for the minimum weight
vertex cover problem, WSEAS Transactions on
Computers, 9(1):83–92, 2010.

24. Stutzle, T. and Dorigo, M., ACO algorithms for the
traveling salesman problem, Evolutionary
Algorithms in Engineering and Computer Science:
Recent Advances in Genetic Algorithms, Evolution
Strategies, Evolutionary Programming, Genetic
Programming and Industrial Applications, K
Miettinen, P Niettaanmaki, M M Makela and J
Periaux, editors, p. 500, Willey, 1999.

25. Stutzle, T. and Hoos, H. H., MAX-MIN ant system,
Future Generation Computer Systems, 16(9):889–
914, 2000.

26. Wong, K. Y. and See, P. C., A new minimum
pheromone threshold strategy (MPTS) for max-min
ant system, Applied Soft Computing, 9(3):882–888,
2009.

27. Huang, H., Yang, X., Hao, Z., and Cai, R., A novel
ACO algorithm with adaptive parameter,
Computational Intelligence and Bioinformatics,
LNCS, 4115:12–21, Springer-Verlag Berlin
Heidelberg, 2006.

28. White, C. and Yen, G., A hybrid evolutionary
algorithm for traveling salesman problem, IEEE
Congress on Evolutionary Computation, 2:1473–
1478, IEEE Computer Society, 2004.

29. Duan, H. and Yu, X., Hybrid ant colony
optimization using memetic algorithm for traveling
salesman problem, Approximate Dynamic
Programming and Reinforcement Learning, 92–95,
IEEE Computer Society, 2007.

30. Reinelt, G., TSPLIB - a traveling salesman problem
library, ORSA Journal on Computing, 3(4):376–384,
1991.

31. Jovanovic, R. and Tuba, M., Ant colony
optimization algorithm with pheromone correction
strategy for the minimum connected dominating set
problem, Computer Science and Information Systems
(ComSIS), 10(1):133–149, 2013,
DOI:10.2298/CSIS110927038J.

32. Jovanovic, R., Tuba, M., and Simian, D., An object-
oriented framework with corresponding graphical
user interface for developing ant colony optimization
based algorithms, WSEAS Transactions on
Computers, 7(12):1948–1957, 2008.

33. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy-Kan and
D.B. Shmoys, “The Travelling Salesman Problem,”
New York:Wiley, 1985.

34. J.L. Bentley, “Fast algorithms for geometric
traveling salesman problems,” ORSA Journal on
Computing, Vol. 4, pp. 387–411, 1992.

35. M. Dorigo and L.M. Gambardella, “Ant Colony
System: A Cooperative Learning Approach to the
Traveling Salesman Problem,” IEEE Transactions on

Evolutionary Computation, Vol.1, No.1, pp. 53-66,
1997.

36. M. Dorigo, V. Maniezzo and A.Colorni, “The ant
system: Optimization by a colony of cooperating
agents,” IEEE Transactions on Systems, Man, and
Cybernetics–Part B, Vol. 26, No. 2, pp. 1-13, 1996.

37. Matthijs den Besten, Thomas Stützle, and Marco
Dorigo. Ant colony optimization for the total
weighted tardiness problem. In PPSN VI:
Proceedings of the 6th International Conference on
Parallel Problem Solving from Nature, pages 611–
620, London, UK, 2000.Springer-Verlag. ISBN 3-
540-41056-2.

38. Thomas Eiter and Georg Gottlob. Hypergraph
transversal computation and related problems in
logic and ai. In JELIA ’02: Proceedings of the
European Conference on Logics in Artificial
Intelligence, pages549–564, London, UK, 2002.
Springer-Verlag. ISBN 3-540-44190-5.

39. Martin Charles Golumbic. Algorithmic Graph
Theory and Perfect Graphs (Annals of Discrete
Mathematics, Vol 57). North-Holland Publishing
Co., Amsterdam, The Netherlands, The
Netherlands,2004. ISBN 0444515305.

40. Christine Solnon. Solving permutation constraint
satisfaction problems with artificial ants. In in
Proceedings of ECAI’2000, IOS,pages 118–122.
Press, 2000.

41. G. Bilchev and I. Parmee (1995) The Ant Colony
Metaphor for Searching Continuous Design Spaces,
Proceedings of the AISB Workshop on Evolutionary
Optimization, Berlin, pp. 25-39.

42. L. Kuhn (2002) Ant Colony Optimization for
Continuous Spaces, thesis, Department of
Information Technology and Electrical Engineering,
University of Queensland, Australia.

43. M. Matsumoto and T. Nishimura (1998) Mersenne
Twister: A 623-Dimensionally Equidistributed
Uniform Pseudo-Random Number Generator, ACM
Transactions on Modeling and Computer Simulation,
vol. 8, no. 1, pp. 3-30.

44. E. Chong and S. Zak (2001) An Introduction to
Optimization, 2nd Edition, New York, Wiley-
Interscience.

45. W. Sun and Y. Yuan (2006) Optimization Theory
and Methods: Nonlinear Programming, New York,
Springer.

46. E. Bonabeau, M. Dorigo, and G. Theraulaz (1999)
Swarm Intelligence: From Natural to Artificial
Systems, New York, Oxford University Press

47. R. Marler and J. Arora (2004) Survey of Multi-
Objective Optimization Methods for Engineering,
Structural and Multidisciplinary Optimization, vol.
26, no. 6, pp. 369-395.

48. K. Miettinen (1998) Nonlinear Multiobjective
Optimization, New York, Springer.

49. Y. Donoso and R. Fabregat (2007) Multi-Objective
Optimization in Computer Networks Using
Metaheuristics, Chicago, Auerbach.

50. I. Das and J. Dennis (1997) A Closer Look at
Drawbacks of Minimizing Weighted Sums of
Objectives for Pareto Set Generation in Multicriteria
Optimization Problems, Structural and
Multidisciplinary Optimization, vol. 14, no. 1, pp.
63-69.

51. J. Sanchis, M. Martinez, X. Blasco, and J. Salcedo
(2007) A New Perspective on Multiobjective
Optimization by Enhanced Normalized Normal
Constraint Method, Structural and Multidisciplinary
Optimization, Springer Berlin.

 International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page326

52. M. Matsumoto and T. Nishimura (2000) Dynamic
Creation of Pseudorandom Number Generators,
Monte Carlo and Quasi-Monte Carlo Methods 1998,
Springer, pp. 56-69.

53. I. Egorov (2003) IOSO NM Version 1, User Guide,
IOSO Technology Center.

54. M. Kong and P. Tian (2005) A Binary Ant Colony
Optimization for the Unconstrained Function
Optimization Problem, Lecture Notes in Computer
Science, Vol. 3801, pp. 682-687.

55. Q. Zhang, “Research on Ant Colony Algorithm and
its Applications”, Computer Knowledge and
Technology, Vol. 5, No.9, 2009, pp. 2396-2398.

56. C. Blum, A. Roli and M. Dorigo, “HC-ACO: The
hyper-cube framework for Ant Colony
Optimization”, Proceedings of MIC 2001-meta-
heuristics International Conference, Porto, Portugal,
July 16-21, 2001, pp.399-404.

57. L. Chen and Z. Pan, “Ant colony optimization
approach for test scheduling of system on chip”,
Journal of Chongqing University of Posts and
Telecommunications, Vol.21, No.2, 2009, pp.212-
217.

58. M. L. Spangler, K. R. Robbins, J. K. Bertrand and
M. Macneil, “Ant colony optimization as a method
for strategic genotype sampling”, Animal genetics,
Vol. 40, No. 3, 2009, pp.308-314.

59. W. Tsai and F. Tsai, “A New Approach for Solving
Large Traveling Salesman Problem Using
Evolutionary Ant Rules,” IJCNN 2002, IEEE.

60. H. Md. Rais, Z. A. Othman, and A. R. Hamdan,
“Improved dynamic ant colony system (DACS) on
symmetric Traveling Salesman Problem (TSP) ,”
International Conference on Intelligence and
Advanced Systems, IEEE, 2007.

61. J. Han and Y. Tian, “An improved ant colony
optimization algorithm based on dynamic control of
solution construction and mergence of local search
solutions,” Fourth International Conference on
Natural Computation, IEEE, 2008.

62. M. Colpan, “Solving geometric tsp with ants,” the
pennsylvania state university, 2005

63. C.-M. Pintea and D. Dumitrescu, “Improving ant
system using a local updating rule,” Proceedings of
the Seventh International Symposium and Numeric
Algorithms for Scientific Computing (SYNASC’05),
IEEE 2005.

64. R. Gan, Q. Guo, H. Chang, and Y. Yi, “Improved ant
colony optimization algorithm for the traveling
salesman problems,” Jouranl of Systems Engineering
and Electronics, April 2010, pp 329-333.

65. C.-X. Wang, D.-Wu. Cui, Y.-K. Zhang, and Z.-R.
Wang, “A novel ant colony system based on
delauney triangulation and self-adaptive mutation for
tsp,” International Joural of Information
Technology, Vol.12, No.3, 2006.

66. Z. A. Othman, H. Md. Rais, and A. R. Hamdan,”
Strategies DACS3increasing its performances,”
European Journal of Scientific Research, 2009.

67. K. S. Hung, S. F. Su, and S. J. Lee, “Improving ant
colony optimization for solving traveling salesman
problem,” Journal of Advanced Computational
Intelligence and Intelligent Informatics, 2007.

68. D. X. Yu, “Hybrid ant colony optimization using
memetic algorithm for traveling salesman problem,”
in Proceedings of the 2007 IEEE Symposium on
Approximate Dynamic Programming and
Reinforcement Learning (ADPRD 2007).

69. L. Min and J. Yant, “A shortest path routing based
on ant algorithm,”\ Journal of Communication and
Computer, ISSN1548-7709, USA, September 2005.

70. Marco Dorigo, Vittorio Maniezzo, and Alberto
Colorni. The ant system: Optimization by a colony of
coorperating agents. IEEE Trans. on Systems, Man
and Cybernetics- Part B, 26(1):29–41, 1996.

