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 ABSTRACT : Ant colony optimization (ACO) is 
a P based metaheuristic algorithm which has been 
proven as a successful technique and applied to a 
number of combinatorial optimization problems 
and is also applied to the Traveling salesman 
problem (TSP). TSP is a well-known NP-complete 
combinatorial optimization (CO) problem and has 
an extensive application background. 
The presented paper proposes an improved version 
of Ant Colony Optimization (ACO) by modifying its 
parameters to yield an optimal result. Also this 
paper shows the experimental results and 
comparison between the original ACO and 
Modified ACO. Further this paper proposes two 
variants of ACO according to their specific 
application. Various city distributions have also 
been discussed and compared. 
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1. INTRODUCTION 

There are numerous fields where 
optimization techniques can be useful for 
example science, engineering, economics 
and business. The real world problems are 
hard to solve, hence we make use of 
approximate algorithms with the aim of 
minimization of time, cost, and risk or the 
maximization of yield, quality, and 
efficiency. 
 Metaheuristics [2] solve instances of 
problems that are believed to be hard in 
general, by exploring the usually large 
solution search space of these instances. 
These algorithms achieve this by reducing 
the effective size of the space and by 
exploring that space efficiently. 
Metaheuristics serve three main purposes: 
solving problems faster, solving large 

problems, and obtaining robust 
algorithms. Moreover, they are simple to 
design and implement, and are very 
flexible. In the recent years, swarm 
intelligence, a new class of 
Metaheuristics, has emerged and attracted 
researchers’ attention. Swarm intelligence 
imitates the social behavior of natural 
insects or animals to solve complex 
problems. Some commonly used swarm 
intelligence algorithms include ant colony 
optimization (ACO), particle swarm 
optimization (PSO) and artificial bee 
colony. ANT COLONY OPTIMIZATION 
is a P- based Metaheuristics technique 
which is a swarm intelligence technique, 
uses the concept of artificial ants acting as 
pheromone carrying agents, is commonly 
used in solving TRAVELLING 
SALESMAN PROBLEM. In this paper in 
section 2. ,we, first of all, have introduced 
the basic technique of ACO, describing 
various aspects of this algorithm following 
which we have defined  our problem 
(TSP) in hand and the procedure to solve 
it in section 3. In section 4. We have 
shown how ACO is used for solving TSP. 
Section 5 mentions the selection of the 
optimal parameters of ACO and section 6. 
proposes variants of ACO . 
 Further section 7. gives the various city 
distributions and compares them. Section 
8. concludes the entire paper indicating 
the pros and cons of the parameters 
obtained and the city distribution selected. 

2. Theory and mathematical model of 
Ant Colony Optimization 
 
2.1.  Theory of Ant Colony Optimization 

 
ACO is a population-based swarm 
intelligence algorithm and was proposed 
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by Dorigo [3][4] and Gambardella. This 
algorithm has been inspired by the 
foraging behavior of real ant colonies. 
Ants coordinate their activities via 
stigmergy, a form of indirect 
communication mediated by modifications 
of the environment. When real ants 
collaborate to accomplish a task such as 
bringing food back to their nest they leave 
pheromones as they move back and forth 
between food sources and nest. 
Pheromone is a chemical that is olfactive 
and volatile in nature. This chemical 
substance has a decreasing action over 
time and the quantity left by one ant 
depends on the amount of food. 

 
Figure 1: formation of shortest and optimal 
path by ants [10] 
 
As shown in the Fig.1, there is an equal probability 
for the ants to choose either path a or b. As the 
central path is shorter and so requires less travel 
time, the ants will end up leaving a higher level of 
pheromones. The more the ants take this path, the 
higher the pheromone trail. Hence, there is an 
emergence of the shortest path as shown in Fig.1.  
This pheromone updating is an autocatalytic Or a 
positive feedback process which results in an 
optimal path. 
 

2.2. Mathematical Model 
 

The ACO algorithm uses the Artificial Ants (AA) 
in order to solve real world problems. The 
algorithm consists of basically two iterated steps: 
solution construction and pheromone update [6][ 7] 

 Solution construction: Artificial ants 
create the solution by forming decision 
graphs in a probabilistic way. Decision 

graphs are constructed on the basis of 
pheromone trails which memorize the 
good generated solutions and these can be 
altered dynamically. 

- Pheromone trails: Indeed, the pheromone 
trails memorize the characteristics of 
“good” generated solutions, which act as a 
positive feedback for the construction of 
new solutions by the ants. The pheromone 
trails change dynamically during the 
search to reflect the acquired knowledge. 
It represents the memory of the whole ant 
search process. 

 Pheromone update: It is done in two 
phases:- 

- An evaporation phase where the 
pheromone trails decreases automatically 
by a constant rate. Each pheromone value 
is reduced by a fixed proportion: 

                  훕퐢퐣		 = (ퟏ − 퐫퐫)훕퐢퐣, ∀ i, j ∈ [1, n]       (1) 
Where rr ∈ [0, 1] represents the reduction 
rate of the pheromone 

  A reinforcement phase where the pheromone trail 
is updated according to the generated solutions 

 
 
 
 
 
 
 
 
 

 
 
Figure 2: pseudo code of ACO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Initialize the pheromone trails; 

Repeat 
For each ant Do 

Solution construction using the pheromone trail; 
Update the pheromone trails: 

Evaporation; 
Reinforcement; 

Until stopping criteria 
Output: Best solution found or a set of solutions. 
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Figure 3: flowchart of ACO 
 

 
3. Travelling Salesman Problem  

3.1. Theory 
 
Traveling salesman problem (TSP) [10] is a 
well known, popular and extensively 
studied problem in the field of 
combinatorial optimization. Its statement 
is apparently simple, but still it remains 
one of the most challenging problems in 
operational research. It is an optimization 
problem to find a shortest closed tour that 
visits all the given cities only once. It is 
known as a classical NP-complete 
problem [13], which has extremely large 
exploration spaces and is very 
complicated to solve. It is defined as 
‘Given a set of cities and the distance 
between each possible pair, the Travelling 
Salesman Problem is to find the best 
possible way of ‘visiting all the cities 
exactly once and returning to the starting 
point’ [8] 

 
3.2. Mathematical Model 
A complete weighted graph G= (N, E) can 
be used to represent a TSP, where N is the 
set of n cities and E is the set of edges 
(paths) fully connecting all cities. Each 
edge (i,j)∈E is assigned a cost dij, which 
is the distance between cities I and j. dij 
can be defined in the Euclidean space and 
is given as follows[14]: 

															퐝퐢퐣 = 	 퐱퐢 − 퐱퐣
ퟐ

+ 퐲퐢 − 퐲퐣
ퟐ
             (2) 
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Figure 4: flowchart of TSP 

4. Procedure for solving TSP using 
ACO [9] 

1) Pheromone trails: A pheromone τij will 
be related with each edge (i, j) of the 
graph G. The pheromone information can 
be represented by an n × n matrix τ where 
each element τij of the matrix expresses 
the attractiveness to have the edge (i, j) in 
the tour. The pheromone matrix is usually 
initialized by the same values. During the 
search, the pheromone will be updated to 
approximate the effectiveness of any edge 
of the graph. 

 
2) Solution construction: Each ant will 

construct a tour in a stochastic way. Given 
an initial arbitrary city i, an ant will select 
the next city j with the probability 
퐏퐢퐣 = 	

훕퐢퐣
∑ 훕퐢퐣퐤훜퐒	

							∀	퐣	훜	퐒     [9]                     (3) 

Where, 
 The set S represents the not yet visited 

cities of the graph G.  
 τ represent the pheromone strength 

The ants may use a randomly selected initial city in 
the construction phase. The additional problem-
dependent heuristic is defined by considering the 
values 휂  or the visibility equal to 1/dij where dij 
represents the distance between the cities i and j. 
The higher the heuristic value 휂  , the shorter the 
distance dij between cities i and j i.e. a more 
preferred node in terms of distance 
Computing the decision transition probabilities 푃  
is performed as follows: 

퐏퐢퐣 = 	
훕퐢퐣
훂×훈퐢퐣

훃

∑ 훕퐢퐤
훂 ×퐤	훜	퐒 훈퐢퐤

훃 				∀	퐣	훜	퐒    [10]                           (4) 

Where, 
 η  represents the visibility of the next 

node or city 
 α represents the pheromone weighing 

factor. If α = 0, the ACO algorithm will be 
similar to a stochastic greedy algorithm in 
which the closest cities are more likely 
selected.  

 β represents distance weighing factor. If β 
= 0, only the pheromone trails will 
become dominant. In this case, a speedy 
emergence of stagnation may occur where 
all ants will construct the same suboptimal 
tour . 

3) Pheromone update : Each ant will 
increment the pheromone related with the 
selected edges in a manner that is 
proportional to the quality of the obtained 
tour :[10] 

				훕퐦퐧 = (ퟏ − 퐫퐫)훕퐦퐧 + ∑ 훕퐦퐧퐤퐍퐚퐧퐭퐬
퐤 ퟏ 	+ 퐞훕퐦퐧퐞퐥퐢퐭퐞    (5)                                                  

Where, 
 흉풎풏 = pheromone laid by ant k between 

city m and city n 
 rr = pheromone evaporation constant 
 e = elite path weighting constant. 
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 흉풎풏풆풍풊풕풆= pheromone laid on the best path 
found by the algorithm to this point. 

Then, good tours will emerge as the result of the 
collaboration between ants through the pheromone 
trails. The typical evaporation procedure is applied 
for the pheromone trails. For each edge, its 
pheromone τij  will evaporate as follows:[10] 
훕퐢퐣		 = (ퟏ − 퐫퐫)훕퐢퐣   		∀					퐢	, 퐣	 ∈ [ퟏ,퐍퐜퐢퐭퐲]     (6)                       

 
5. Optimal Parameters For ACO 

Notations used 
 Nants – number of ants 
 Ncity – number of cities 
 Phmone – initial pheromone level 
 Iter – number of iterations 
 rr – evaporation rate 
 a – pheromone weighing factor 
 b – distance weighing factor 

 
5.1. Variation of Nants with Ncity 

In this method we are observing the variation of 
Nants with Ncity in order to find the relationship 
between them. 
Phmone=0.9, a=2, b=8, rr=0.25, iteration=1000 
 

Table 1:Variation of Ncity with Nants 

 
The number of ants should be less than or equal to 
the number of cities for quick results however, the 
distance remains same. This maybe because as the 
number of ants are increased for a given number of 

cities only the computation time increases while the 
distance remains same. 

Nants ≤ Ncity 
5.2. Variation of Phmone with Nants and  

Ncity 
              Ncity= 30, a=2, b=8, rr=0.25, iter=1000  

      Table 2:Variation of Phmone with Nants 
 

 
    

Table 3: Variation of Phmone with Ncity 

 

 
 

Phmone 
= 0.1 

Phmone 
= 0.3 

Phmone 
= 0.5 

Phmone 
= 0.9 

Nants 
= 30 

21.453 21.880 22.267 21.502 

Nants 
= 40 29.755 29.108 29.228 29.928 

Nants 
= 50 

37.636 37.469 37.704 37.810 

Nants 
= 60 

44.911 44.680 45.064 44.517 

Nants 
= 70 

51.432 52.623 52.653 53.275 

Nants 
= 80 

60.760 61.011 61.692 61.874 

Nants 
= 90 

68.696 69.365 68.671 69.293 

Nants 
= 100 

78.070 77.542 77.525 77.771 

 
 

Ncity = 
30 

Ncity = 
40 

Ncity = 
50 

Ncity = 
60 

Nants = 
30 

21.502 36.541 51.202 72.651 

Nants = 
40 29.928 49.389 69.162 101.385 

Nants = 
50 

37.810 63.647 94.174 127.994 

Nants = 
60 

44.517 76.705 112.591 155.476 

Nants = 
70 

53.275 90.175 130.358 185.154 

Nants = 
80 

61.874 106.692 150.885 211.827 

Nants = 
90 

69.293 114.582 170.264 241.261 

Nants = 
100 

77.771 131.713 190.051 270.209 

 
 

Phmone 
= 0.1 

Phmone 
= 0.3 

Phmone 
= 0.5 

Phmone 
= 0.9 

Ncity 
= 30 

21.257 22.472 21.121 21.502 

Ncity 
= 40 37.747 37.437 36.744 36.541 

Ncity 
= 50 

50.288 53.245 50.229 51.202 

Ncity 
= 60 

71.963 72.675 71.651 72.650 

Ncity 
= 70 

93.455 95.231 95.860 95.828 

Ncity 
= 80 

125.606 123.994 125.168 124.732 

Ncity 
= 90 

151.891 151.566 148.995 149.485 

Ncity 
= 100 

197.594 196.071 196.029 199.461 



                  International Journal of Computer Trends and Technology (IJCTT) – volume 9 number 6– Mar  2014 

 

ISSN: 2231-2803                      http://www.ijcttjournal.org               Page315 

 

The initial pheromone value of 0.3 displays better 
results in terms of time for most of the cases. As 
we are increasing the number of ants due to 
repeated deposition of pheromone the lesser initial 
value of pheromone displays better results. 

Pheromone = 0.3 

5.3.1.      Time Variation of rr with Nants 
Ncity=30, a=2 , b=8 , phmone=0.5 , iter=1000 
 
Table 4:Time variation of rr with Nants 
 

 
When rr=1 , the initial pheromone level is totally 
not included i.e. no memory of initial pheromone 
levels. For a given number of ants as the rr is 
increased, the computation time is reduced. 
 

5.3.2  Distance variation of rr with Nants 
     Ncity=30 , a=2 , b=8 , phmone=0.5 , iter=1000  
   
     Table 5:Distance variation of rr with 
Nants 

 
 
Distance increases with rr for a given number of 
Nants since the influence of initial pheromone 
levels decrease hence leading to randomness. To 
balance between both time and distance variation, 
optimum value of rr is taken to be 0.5. 

rr = 0.5 
 

5.4.1.  Time variation of rr with Ncity 
Nants=30 , a=2 , b=8 , phmone=0.5 , iter=1000 

Table 6:Time variation of rr with Ncity 

 rr = 
0.25 

rr = 0.5 rr = 
0.75 

rr = 1 

Nants = 
30 

22.267 22.11 21.927 21.822 

Nants = 
40 

29.228 29.626 29.350 28.308 

Nants = 
50 

37.704 36.450 35.831 36.682 

Nants = 
60 

45.064 44.760 44.685 43.465 

Nants = 
70 

52.653 52.061 52.951 50.107 

Nants = 
80 

61.692 60.952 60.660 60.385 

Nants = 
90 

68.671 69.638 67.066 66.352 

Nants = 
100 

77.525 75.993 74.433 75.493 

 rr = 
0.25 

rr = 
0.5 

rr = 
0.75 

rr = 1 

Nants 
= 30 

44 44 45 45 

Nants 
= 40 

44 44 43 44 

Nants 
= 50 

44 43 44 45 

Nants 
= 60 

46 44 44 45 

Nants 
= 70 

43 43 43 44 

Nants 
= 80 

44 44 44 43 

Nants 
= 90 

44 44 46 43 

Nants 
= 100 

43 44 43 44 

 rr = 
0.25 

rr = 0.5 rr = 
0.75 

rr = 1 

Ncity = 
30 

22.121 21.848 22.135 21.822 

Ncity = 
40 

36.744 36.373 37.645 34.495 

Ncity = 
50 

50.829 52.761 50.847 47.308 

Ncity = 
60 

71.651 69.491 73.071 67.025 

Ncity = 
70 

95.860 95.131 99.055 89.910 

Ncity = 
80 

125.168 116.754 123.522 110.979 

Ncity = 
90 

148.995 140.528 141.054 130.294 

Ncity = 
100 

197.929 191.937 197.285 154.284 
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5.4.2. Distance variation of rr with Ncity 
      Nants=30, a=2 , b=8 , phmone=0.5 , iter=1000 
Table 7:Distance variation of rr with Ncity 

Optimum value of rr both in terms of time and 
distance can be seen as 0.5 

rr = 0.5 

5.5.1.   Time variation of iter with Nants 
      Ncity=30 , a=2, b=8 , phmone=0.5, rr=0.25 
Table 8: Time variation  of iter with Nants 

 
5.5.2.  Distance variation of iter with Nants 

      Ncity=30 , a=2, b=8 , phmone=0.5, rr=0.25 
Table 9: Distance variation of iter with 

Nants 

 
Time is increasing when the number of iterations is 
increased for a given number of ants. This is so 
because the number of loops has increased. Not 
much information can be drawn out from the 
distance variation graph since the number of cities 
is same; hence there is little variation with respect 
to ants. 

5.6.1.  Time variation of iter with Ncity 
       Nants=30, a=2, b=8, phmone= 0.5, rr=0.25 

 rr = 
0.25 

rr = 0.5 rr = 
0.75 

rr = 1 

Ncity = 
30 

44 44 45 45 

Ncity = 
40 

53 51 53 53 

Ncity = 
50 

55 54 56 55 

Ncity = 
60 

65 64 67 67 

Ncity = 
70 

70 70 68 73 

Ncity = 
80 

78 74 81 77 

Ncity = 
90 

82 83 83 93 

Ncity = 
100 

88 84 84 85 

 iter = 
10 

Iter 
= 
100 

Iter = 
400 

Iter = 
800 

Iter = 
1000 

Nants 
= 30 

0.2843 2.329 9.333 18.077 22.121 

Nants 
= 40 0.364 3.082 11.698 23.294 29.228 

Nants 
= 50 

0.450 3.869 15.130 30.132 37.707 

Nants 
= 60 

0.520 4.496 17.741 35.460 45.064 

Nants 
= 70 

0.625 5.354 20.609 41.195 52.653 

Nants 
= 80 

0.707 6.521 25.207 49.768 61.692 

Nants 
= 90 

0.778 7.147 27.767 54.677 68.671 

Nants 
= 100 

0.881 8.071 31.577 62.843 77.525 

 iter = 
10 

Iter = 
100 

Iter = 
400 

Iter = 
800 

Iter = 
1000 

Nants 
= 30 

47 47 46 46 44 

Nants 
= 40 47 43 43 43 44 

Nants 
= 50 

45 43 44 44 44 

Nants 
= 60 

43 43 42 43 46 

Nants 
= 70 

44 43 43 43 43 

Nants 
= 80 

44 43 45 45 44 

Nants 
= 90 

45 45 43 44 44 

Nants 
= 100 

44 44 43 46 43 
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Table 10:Time variation of iter with Ncity 

 

5.6.2.  Distance variation of iter with Ncity 
Nants=30 , a=2 , b=8 , phmone= 0.5 , rr=0.25 

Table 11:Distance variation of iter with 
Ncity 

 
 

 

 

 

 

 

 

 

 

 

 

In TABLE 10,we can see that the time is increasing 
as the numbers of iterations are increased since the 
number of loops is increasing. In TABLE 11, with 
increasing number of iterations the ACO yields 
more optimum results as for a given number of 
cities the distance is decreasing but after a certain 
number of iteration the result is getting static 
leading to just increased amount of time.  It is 
observed that the max number of iterations should 
be of the order of 10 times the number of cities as it 
is giving favorable results. 

 5.7.1.  Distance variation of a and b 
Ncity=30,Nants=30,rr=0.25,phmone=0.5,iter=1000 

Table 12:Distance variation of a and b 

 

5.7.2.  Time variation of a and b 
Ncity=30,Nants=30,rr=0.25,phmone=0.5,iter=1000 

 

  

 iter = 
10 

Iter = 
100 

Iter = 
400 

Iter = 
800 

Iter = 
1000 

Ncity 
= 30 

0.2843 2.329 9.333 18.077 22.121 

Ncity 
= 40 0.449 3.969 15.061 28.129 36.744 

Ncity 
= 50 

0.645 5.133 19.851 38.703 50.829 

Ncity 
= 60 

0.887 7.715 28.253 54.911 95.860 

Ncity 
= 70 

1.151 9.950 37.091 76.570 97.929 

Ncity 
= 80 

1.515 12.595 47.471 87.054 125.168 

Ncity 
= 90 

1.752 14.456 53.44 106.609 148.995 

Ncity 
= 
100 

2.303 19.508 67.52 126.234 197.929 

 Iter = 
10 

Iter = 
100 

Iter = 
400 

Iter = 
800 

Iter = 
1000 

Ncity 
= 30 

47 47 46 46 44 

Ncity 
= 40 55 51 54 53 53 

Ncity 
= 50 

56 56 55 55 55 

Ncity 
= 60 

67 67 67 66 88 

Ncity 
= 70 

74 71 74 68 70 

Ncity 
= 80 

81 79 77 75 78 

Ncity 
= 90 

87 83 87 89 88 

Ncity 
= 100 

94 87 86 88 88 

 a = 
0.5 

a = 1 a = 2 a = 3 a = 4 a = 5 a = 6 

b = 
0.5 

87 70 48 52 59 65 79 

b = 1 74 58 48 49 53 53 57 
b = 2 59 48 46 49 48 51 50 
b = 3 53 48 46 46 48 51 48 
b = 4 50 50 45 45 51 47 52 
b = 5 49 46 45 46 48 48 48 
b = 6 46 46 45 46 45 46 45 
b = 7 45 45 47 46 45 48 47 
b = 8 47 45 44 46 47 46 45 
b = 9 46 47 46 46 48 46 47 
b = 
10 

46 46 46 47 46 46 44 

b = 
11 

45 47 45 45 46 45 46 

b = 
12 

45 45 44 45 46 46 44 
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Table 13:Time variation of a and b 

 
It can be observed that the worst values are 

appearing for a, b<1 therefore we should keep 
the value of a and b >1. When a= 2 we are 
getting the minimum time for all the values of 
b. hence the best value for a is 2. As b is 
increasing graph converges quickly. Hence we 
conclude that value of b should be more. Also 
it has been observed that when value of b > a 
ACO yield in better results. In the time 
variation graph quick and optimal results are 
obtained when a =2 b= 2 When emphasis is on 
distance, a= 2 and b= 8 yields the favorable 
result with the value of dmin as 44. 

Original results: 

a=2, b=6, rr=0.5, phmone=0.1, 
Nants=Ncity=30, iter=600 

 
         Figure 5: hamiltonian cycle    

   
Figure 6: variation of dmin with 

iter 
 Time Elapsed =14.32 s 
 Dmin=44 

Compared to original code, keeping the 
number of iterations same as 600 

a=2, b=8, rr=0.5, phmone=0.5, Nants=Ncity=30 
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         Figure 7: modified Hamiltonian cycle        

          Figure 8: modified variation of dmin 
with iter 

 Time Elapsed = 13.633s 
 Dmin = 39 

Thus compared to the original results we can 
see that there is a significant improvement in 
terms of distance from 44 to 39 giving a 
11.36% decrease. Also, in terms of time there 
is a decrease from 14.32s to 13.633s, which 
gives a 4.8% improvement. Thus the change 
of parameters has resulted in achieving a 
relatively more optimized result in terms of 
both distance and time for cities=ants=30. 

Graph showing the comparison between  

1. a=0  
2. b=0 
3. original 
4. modified 

This graph clearly shows that the best results are 
obtained when the code is modified to give 
appropriate value of parameters and gives the worst 
result when b=0 i.e. the path formation depends 
entirely on pheromone levels. 

 

 
Figure 9: comparison between different 
parameter values 
 

From the observations made above it can be 
concluded that the values of the parameters are:  

 
 
 
 
 
 
 

 
Figure 10: optimal parameter values for 

ACO 

 

6. VARIANTS OF ACO  
6.1.  NO HAMILTONIAN CYCLE 

(STRAIGHT LINE PATH) 
When TSP is implemented using ACO we get a 
connected graph containing all the nodes to be 
visited. But the algorithm can also be modified in 
order to find the shortest distance between two 
nodes with the constraint that all other nodes have 
to be visited as well. 
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1) Mathematical Model 

Algorithm for no Hamiltonian cycle (straight 

path) 

 

 

 

 

 

Figure 11: pseudo code for no Hamiltonian 

cycle ACO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Flowchart 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: flowchart for no 
Hamiltonian cycle ACO 

 

Initialize the pheromone trails; 
Repeat 

For each ant Do 
 Initialization of tours such that no node is repeated; 
  Solution construction using the pheromone trail; 

Update the pheromone trails: 
Evaporation; 
Reinforcement; 

          Until Stopping criteria . 
Output: Best solution found or a set of solutions 
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3) SIMULATION RESULT: 

Ncity=30 , Nants= 30 , a=2 , b=8 , rr= 0.9, 
phmone=0.9 , Iter=1000 

 
                     Figure 13: straight path 

 Time Elapsed =24.117 seconds 
 Dmin=39 
 Converges in less than 50 iterations 

 

 
Figure 14 : convergence of distance with 
iteration 

6.2. TIMING CONSTRAINTS 
This is another variation of ACO where we have 
imposed timing restriction on our salesman 
wherein the salesman is expected to complete the 
tour in a given interval of time .If he is successful 
to do so , the output is displayed to the user 
otherwise no result is displayed. 

1) ALGORITHM FOR TIME CONSTRAINT 
 

 

 

 

 

 

 
Figure 15: pseudo code for time constraint 
ACO 

2) FLOWCHART 

 

 
 
 
 
 
 
 
 
 
 
 

UPDATE 
    PHEROMONE 

TRAILS 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: flowchart of time constraint 
ACO 
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Initialize the pheromone trails; 
Repeat 

For each ant Do 
Solution construction using the pheromone trail; 

Update the pheromone trails: 
Evaporation; 

Reinforcement; 
Until stopping criteria 

Check for satisfaction of timing condition. 
If time consideration is not met Output: no 

solution. 
Else Output: Best solution found or a set of solutions. 
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3) TABLE SHOWING TIME 

COSIDERATION RESULTS 
Ncity=30 , Nants= 30 , rr=0.5, phmone =0.5 , a=2 , 
b=8 , iter =1000 
Table 14:Time constraint ACO 

 
 

4) SIMULATION RESULTS: 

 
  Figure 17: hamiltonian cycle     

       
 Figure 18: variation of dmin with iter 

 Time Elapsed =22.2671seconds 
 Dmin=44 
 Converges in less than 100 iterations 

 
 
 

 
7. VARIOUS CITY DISTRIBUTIONS 

For all the previous cases we have considered a 
uniform  distribution but we can also consider other 
distributions as well to distribute the city locations. 
The various distributions considered are: 

A. GAUSS NORMAL DISTRIBUTION  
A normal Gaussian distribution pdf  is 

풇(풙,흁,흈) =
풆

(풙 흁)ퟐ
ퟐ흈ퟐ

흈√ퟐ흅
 

   

Where µ is the mean or expectation of the 
distribution 
And parameter σ is the standard deviation. 
Here  µ=0 and σ=1 
 

B. EXPONENTIAL DISTRIBUTION 
Pdf of exponential distribution is given as 

풇(풙,흀) = 흀풆 흀풙							풙 ≥ ퟎ
ퟎ																풙 < 0

 

 
Where λ is the parameter of the distribution often 
called rate parameter. Here λ=1. 
 

C. POISSON DISTRIBUTION 
The pdf is given by 

풇(풙,흀) =
흀풙풆 흀

풙!  
  
Where λ is Poisson distribution parameter. 
Here λ=5. 
Tables showing comparison between the four 
distributions on the basis of variation of distances 
covered and time elapsed 
 
Ncity=30 , Nants= 30 , rr=0.5, phmone =0.5 , a=2 , 
b=8,iter=600 
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Time = 5 No result 
Time = 10 No result 
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Table 15:Comparision of various city 
distributions(distance) 

 
 

 
Table 16:Comparison of various city 
distributions(time) 

GAUSS NORMAL DISTRIBUTION  

 
FIGURE 19: hamiltonian cycle 

 
 
 

 

 

 

 

FIGURE 20:variation of Dmin with Iter 

 
 
 
 
EXPONENTIAL DISTRIBUTION 

 
Figure 21: hamiltonian cycle 

      
Figure 22: variation of Dmin with Iter 
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100 2.1922 2.1023 2.1723 3.1561 
200 4.4456 4.3918 4.3406 6.2608 
300 6.4837 6.3519 6.3971 9.3476 
400 8.6661 8.1074 8.3676 12.5140 
500 10.9974 10.6782 10.5646 15.6277 
600 13.2542 12.7943 12.7538 18.7444 
700 13.5349 15.3065 14.8437 21.9669 
800 17.8235 17.1270 16.9897 25.2293 

iter Uniform  
distribution 

Gauss 
normal  
distribution 

Exponential 
distribution 

Poisson 
Distribution 

100 3.9374 16.3119 9.6465 35.6656 
200 3.9374 16.9518 9.6465 35.6656 
300 3.9374 16.5949 9.6433 35.6656 
400 3.9374 16.1133 9.6433 35.6656 
500 3.9374 15.0799 9.6433 35.6656 
600 3.9374 13.3392 9.6433 35.6656 
700 3.9374 13.9707 9.6433 35.6656 
800 3.9374 17.9863 9.6433 35.6656 
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POISSON DISTRIBUTION 

 
Figure 23: hamiltonian cycle 

       
Figure 24: variation of Dmin with Iter 
 
 
8. CONCLUSIONS 
 From the parameter variation section, it can be 
concluded that the values of the parameters are:  

 a,b>1 also b>2a 
 0<rr<1 ;  
 0<phmone<1 ;  
 Nants= Ncity 
 Iter> 10(Ncity) 
 

The following conclusions can be drawn from the 
distribution variation comparison table 

 Time elapsed is highest for Poisson 
distribution as compared to other 
distributions. 

 Time to converge is least for uniform 
distribution. 

 Variation in distance is maximum for 
Gauss normal distribution. 

 For exponential distribution the distance 
variation is less .However the time to 
converge is more as compared to uniform 
distribution. 
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