Machine Learning Techniques for Automatic Classification of Patients with Fibromyalgia and Arthritis
Begoña Garcia-Zapirain, Yolanda Garcia-Chimeno, Heather Rogers "Machine Learning Techniques for Automatic Classification of Patients with Fibromyalgia and Arthritis". International Journal of Computer Trends and Technology (IJCTT) V25(3):149-152, July 2015. ISSN:2231-2803. www.ijcttjournal.org. Published by Seventh Sense Research Group.
Abstract -
The ADABoost classifier is a very powerful
tool for helping to diagnose multiple diseases. With some
critical features related to the pathology, the classifier can
automatically perform the subjects classification. In this
way, the automatic classification is a useful aid for the
doctor to make the diagnosis. In this manuscript, the authors
have achieved a specific classification for fibromyalgia and
rheumatoid arthritis using medico-social and
psychopathological features obtained from specific
questionnaires. It has obtained success rate above 89%,
reaching a 97.8596% in the best case. With these results, it
can avoid the innumerable and uncomfortable medical tests
to diagnose the pathology, saving time and money.
References
[1] K. P. Murphy, Machine learning: a probabilistic perspective.
MIT press, 2012.
[2] K. Yoshida and A. Sakurai, Machine Learning. Bidgoli H Ed.
Encyclopedia of Information Systems, Elsevier, New York,
pp. 103-114, 2003.
[3] I. I. Hudson, M. S. Hudson, L. F. Pliner, et al. Fibromyalgia
and major affective disorder: A controlled phenomenology
and family history study. Am I Psychiatry, vol 142. Pp. 441-
446, 1985.
[4] G. Consoli, D. Marazziti, A. Ciapparelli, L. Bazzichi, G.
Massimetti, C. Giacomelli, et al. The impact of mood,
anxiety, and sleep disorders on fibromyalgia. Comprehensive
Psychiatry, vol 53, pp. 962-967, 2012.
[5] (2010) Centers for Disease Control and Prevention. Available:
http://www.cdc.gov/arthritis/basics/fibromyalgia.htm,
http://www.cdc.gov/arthritis/basics/rheumatoid.htm
[6] F. Salaffi, P. Sarzi, P. Puttini, R. Girolimetti, F. Atzeni, S.
Gasparini, et al. Health-related quality of life in fibromyalgia
patients: a comparison with rheumatoid arthritis patients and
the general population using the SF-36 health survey.
Clinical and Experimental Rheumatology, vol. 25, pp. 67-74,
2009.
[7] D. L. Scott, F. Wolfe and T. W. Huizinga. Rheumatoid
arthritis. Lancet, vol 25(376), p. 9746, 2010.
[8] (2010) American College of Rheumatology. Available:
http://www.rheumatology.org/Practice/Clinical/Patients/Dise
ases_And_Conditions/Rheumatoid_Arthritis/
[9] B. Sundermann, M. Burgmer, E. Pogatzki-Zahn, M. Gaubitz,
C. Stüber, E. Wessolleck, et al. Diagnostic classification
based on functional coneectivity in chronic pain: model
optimization in fibromyalgia and rheumatoid arthritis.
Academic radiology, vol. 21(3), pp. 369-377, 2014.
[10] Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. In ICML, vol 96, pp. 148-156, 1996.
[11] K. P. Bennett and A. Demiriz, R. Maclin. Exploiting
unlabeled data in ensemble methods. In Proceeding of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, pp. 289-296,
2002.
[12] R. Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection. Ijcai, vol 2, pp.
1137-1145, 1995.
[13] L. Derogatis. SCL-90. Administration, scoring, and
proceduresmanual-I for the R (revised) version and other
instruments of the Psychopathology Rating Scales Series.
Chicago: JohnsHopkins University School of Medicine, 1997.
[14] A. Savio, M. Garcia-Sebastian, M. Graña and J. Villanua.
Results of an adaboost approach on Alzheimer’s disease
detection on MRI. In Bioinspired Applications in Artificial
and Natural Computation. Springer berlin Heidelberg, pp.
114-123, 2009.
[15] D. De Seny, M. Fillet, M. A. Meuwis, P. Geurts, L. Lutteri, C.
Ribbens, et al. Discovery of new rheumatoid arthritis
biomarkers using the surface-enhanced lase
desorption/ionization time-of-flight mass spectrometry
ProteinChip approach. Arthritis & Rheumatism, vol 52(12),
pp. 3801-3812, 2005.
Keywords
AdaBoost, classification, Fibromyalgia,
arthritis.